- CFrAY

=\

Field Encapsulation Library
The FEL 2.2 User Guide

Patrick J. Moran Chris Henze
David Ellsworth

MRJ Technology Solutions
NASA Ames Research Center, M/S T27A-2
Moffett Field, CA, 94035, USA
{pmoran, chenze, ellswort}@nas.nasa.gov

June 14, 1999

Mo

Preface

This document describes version 2.2 of the Field Encapsulation Library (FEL), a li-
brary of mesh and field classes. FEL is a library for programmers — it is a “building
block” enabling the rapid development of applications by a user. Since FEL is a library
intended for code development, it is essential that enough technical detail be provided
so that one can make full use of the code. Providing such detail requires some assump-
tions with respect to the reader’s familiarity with the library implementation language,
C++, particularly C++ with templates. We have done our best to make the explanations
accessible to those who may not be completely C++ literate. Nevertheless, familiarity
with the language will certainly help one’s understanding of how and why things work
the way they do. One consolation is that the level of understanding essential for using
the library is significantly less than the level that one should have in order to modify or
extend the library.

One more remark on C++ templates: Templates have been a source of both joy and
frustration for us. The frustration stems from the lack of mature or complete implemen-
tations that one has to work with. Template problems rear their ugly head particularly
when porting. When porting C code, successfully compiling to a set of object files typ-
ically means that one is almost done. With templated C++ and the current state of the
compilers and linkers, generating the object files is often only the beginning of the fun.
On the other hand, templates are quite powerful. Used judiciously, templates enable
more succinct designs and more efficient code. Templates also help with code mainte-
nance. Designers can avoid creating objects that are the same in many respects, but not
exactly the same. For example, FEL fields are templated by node type, thus the code
for scalar fields and vector fields is shared. Furthermore, node type templating allows
the library user to instantiate fields with data types not provided by the FEL authors.
This type of flexibility would be difficult to offer without the support of the language.

For users who may be having template-related problems, we offer the consola-
tion that support for C++ templates is destined to improve with time. Efforts such as
the Standard Template Library (STL) will inevitably drive vendors to provide more
thorough, optimized tools for template code development. Furthermore, the benefits
will become harder to resist for those who currently subscribe to the least-common-
denominator “code it all in C” strategy.

May FEL bring you both increased productivity and aesthetic satisfaction.

Contents

1 Introduction)
I.I AnFELexample e e e e e e e
1.2 Agraphicexample
13 FELIandFEL2 i ettt et ea s
1.4 Acknowledgementso

2 Templates and Typedefs
2.1 Templates
22 Typedefs. e

3 Vector and Matrix Classes
3.1 Thevectorclasses v v v c v v v v e e e e e e
3.1.1 FEL vectors as arguments to other libraries
32 Thematrixclasses. o v v v v v e v v v e e e

4 The FEL _time Class o
4.1 Multiple time representations: Acaveat

5 The FEL _cell Class
- 51 Thecelldatamembers- ...
52 TheFEL._vertexcellclass. v v v

6 Positional Classes
6.1 FEL.vertexcell e e
6.2 FEL_Phys.pos« v i v i v it it e
6.3 FELstructuredpos o o i v v h o e
6.4 FEL_vector3fand.nt

7 Memory Management :
7.1 Reference counted objectsand pointers
7.2 Reference counting and mutual exclusion

8 Dynamic Casting

11
12
15
17
17

19
19
20

21
21
22
22

25
26

27
28
28

29
29
29
30
30

31
31
33

35

6 CONTENTS
9 Interpolation 37
9.1 Settinginterpolationmodeso 37
9.2 Nearest neighborinterpolation 38
9.3 Isoparametricinterpolationo 38
9.4 Physical space interpolation 0o 39
10 Meshes and Fields 41
10.1 Member functionstyle 41
I02 Returnvalues v e v i v i e e e 42
11 Meshes 43
11.1 Themeshclasshierarchy oo 44
11.2 Setting and getting mesh properties 44
11.3 Simplicialdecomposition Lo oo 44
11.4 Pointlocation and interpolation. 46
115 Coordinates« o vt i i e e e e e e e e 47
11.6 Cell geometricproperties« v oo oo v 48
11.7 Cell incidencerelationships 48
11.8 Adjacentcellso e 49
119 Cardinality o o i e e e 50
11.10Cells and canonical enumeration 50
ILLIIPLOT3DIBLANK o ot r i o e i e e e e e s 51
12 Structured Meshes 53
12.1 Simplicial decomposition « v . v oL em o e 53
12.2 Cellincidencerelationships v v oo ot 53
12.3 Canonicalcellenumeration 54
12.4 Computational Space support« . . .« et b 54
12.5 Structured meshdimensions oo 55
12.6 Axis-aligned structuredmeshes 55
12.7 Curvilinearmeshes e e 56
12.8 Curvilinear mesh pointlocation. 58
[2.9 Curvilinear surface meshes e e e e 59
13 Unstructured Meshes 61
13.1 Constructing a tetrahedralmesh 61
13.2 Cellincidencerelationships oo 62
13.3 Canonical cell enumeration 62
134 Surfaces . v« v v v v i e e e e e e e e e e 62
[3.5 Pointlocation . v v v v v v v i e e e e e e e e e 63
13.6 Constructing ascattered vertexmesh 63
14 Transformed Meshes 65
14.1 How transformedmesheswork v v v 67

14.2 The transformed meshsubclasses 67

CONTENTS

15 Multi-Zone Meshes

15.1 Point location, IBLANK,andPLOT3D)

15.2 Constructing amulti-zonemesh« o

16 Iterators
16.1 Basic iteratorusage e e e e e e .
16.2 Iteratorsandordering e oo s e
16.3 Iteratingovermeshsubsets o
16.4 Tteratingoversurfaces. oo oot a e

16.5 Iteratorsandtime PP

17 Fields
17.1 Fieldsingeneral oo
172 FieldsinconteXt. v v v v v v e e e vt v v e e

17.2.1 Typelessfields A
1722 Typedfields . - o

17.3 Fieldsindetail o o i

17.3.1 Everyfieldhasamesh
1732 Theat*{(Ycalls.o
17.3.3 Iteratingoverfields
17.34 Eagerfields e e e e e e
17.3.5 Field type “informant” functions« ..
17.3.6 Oddsandends e e

18 Core Fields

18.1

What are core fields? e e e e e e e .

182 Thenodebuffer o i i i i i it e e e

18.3

Constructors and suppressed deallocation

184 Anexample e e e
185 geteeagerfield() e

19 Derived Fields

19.1
19.2
19.3
19.4

19.5
19.6

Whatis aderived field? e e e
Lazy vs. eagerevaluationo
Mapping and interpolating e e
Built-inderived fields e e e e e
19.4.1 Customizing the built-inderived fields
PLOT3D derivedfields . . . - . . ¢ ra oo v v v v v v oo v v .
Constructing a custom derived field e e
19.6.1 Writing a mapping function
19.6.2 Derived field declarations and constructors
19.6.3 Derived fieldchecklist,
19.6.4 A more or less complete derived field example

69
69
70

73
73
75
75
77
77

79

- 79

79
80
80
83
83
84
87
88
89
90

93
93
93
94
95
97

99
99

20

21

22

23

5y

CONTENTS

Differential Operator Fields 113
20.1 Gradient,divergence,andcurl 113
20,11 Grad. . . . o o e e e e e e e e 113
20.1.2 Div e e e e e e e e 113
2013 Curl . . o o e e e e 114

20.2 First-order and second-orderaccuracy« oo .. 114
20.3 Creating differential operatorfields 115
20.4 “Chaining” differential operatorfields e 117
Instantiating Fields 119
21.1 Basictyperequirements.o e e 119
21.2 Differential operator field requirements 121
File /O - 123
22.1 PLOT3Dfilereaderfunctions.o oo 123
22.1.1 ThePLOT3Dflagso v 124
22.1.2 Automatic mesh typededuction 124
22.1.3 Readingmeshfiles 125
22.1.4 Getting information about structured mesh files 125
22.1.5 Readingsolutionfiles. 126
22.1.6 Reading functionfiles 127
22.1.7 Reading individual zones from multi-zonefiles 128
22.1.8 Making the PLOT3D readers more verbose 128

22.2 PLOT3D and pagedfilereaders. i v i v v v oo 128
223 TheFITS filereader e e e e 130
224 TheVis5SDfilereader v 130
Paged Meshes and Fields 131
231 IntroduCtion v v vt e e e e e e e e e e e 131
232 Howpaged files WOrk v v v v v oo v e ... 132
23.3 Converting PLOT3D files to paged files, 133
23.4 Using pagedmeshesandfields 133
23.5 Controlling memory usage v . v o v v v vt e oo 134
2351 PoolSize . . . v v v i e e e 134
23.5.2 Pagepriority hints D K b

The PLOT3D Field Manager ' ' 137
24.1 Constructing an FEL_plot3d_field 137
24.1.1 Constructing an FEL_steady.plot3d._field 137
24.1.2 Constructing a time-varying field manager. 138
24.1.3 Constructing an FEL plot3dqg_field 139

24.2 Creating primitive and derived PLOT3Dfields 139
24.3 How the field managerworks e 141
24.4 Miscellaneous FEL_plot3d_fieldmethods 142
245 Anexampleo e e e e 142

24.6 PLOT3D derived field “convenience functlons 143

CONTENTS

24.7 PLOT3D derived field inventoryarrays« .« o v o v v

25 Time-Varying Fields
25.1 Working sets and callbacks . . .

25.2 Time representations and conversions -0 e

25.3 Temporal interpolation
25.4 A time-varying field example . .

26 Time-Varying Meshes
26.1 Single-zone time-varying meshes
26.2 Multi-zone time-varying meshes

A Glossary

143

149
150
152
152
152

155
156
157

159

10

CONTENTS

Chapter 1

Introduction

The Field Encapsulation Library (FEL) is a library for representing fields and meshes.
The fields may represent the results from simulations or experimental observations.
The main goals of FEL are to provide:

¢ a horizontal product supporting the quick development of new applications
¢ an extensible framework supporting a variety of mesh and field types

e a high-performance mesh-indgpendem interface

o a library supporting work with large data sets

“Horizontal products” are reusable libraries that make the development of “vertical
products” — applications -— easier. FEL is a set of C++ classes designed to support
not just the field and mesh types that are currently implemented, but also new mesh
and field types in the future. A key part of the design is the development of a mesh-
independent interface, i.e., an interface that allows users to write a single algorithm that
will work with a variety of mesh and field types. The goal is to be able to introduce new
types in the future and reuse algorithms written in terms of the FEL interface without
modification. Finally, there are a number of features in FEL that are designed to make
working with large data sets feasible for more users.

To develop an application using FEL, you should not find it necessary to read this
entire document. The FEL release includes a primer which provides an overview of
many features of FEL along with sample programs. The primer should appeal to those
who prefer to “dive in” and learn by writing actual applications. On the other hand, the
primer, in the name of brevity, focuses on library essentials. To get a more complete
view of the features and design philosophy of FEL, you are encouraged to read on.

To convey the flavor of programming with FEL, we will now walk through a small
example.

11

12 CHAPTER 1. INTRODUCTION

1.1 An FEL example

The following program reads in a mesh and field, then finds the cell with the greatest
pressure gradient magnitude at its centroid:

#include "FEL.h"
int main(int argc, char* argvil)
{
unsigned flags = FEL_deduce_mesh_type{argvi{ll);
FEL_mesh_ptr mesh = FEL_read_mesh(argv{l], flags);
FEL_plot3d_g field ptr g _field =
FEL_read_g(mesh, argv[2], flags);

FEL_float_field ptr p_field =
FEL_plot3d_make_pressure_field(g_field);

FEL_vector3f_field_ptr grad_p_field =
new FEL_gradient_of_float_fieldl(p_field);:

FEL_float_field_ptr mag_grad p_field =
new FEL_magnitude_of_vectorBf_field(grad_p_field);

mag_grad_p_field->set(FEL_SIMPLICIAL_DECOMPOSITION, 0);
mag_grad_p_field->set {FEL_INTERPOLATION,
FEL_ISOPARAMETRIC_INTERPOLATION) ;

int res;

float field_value, max_value = 0.0;

FEL_vector3f coords(8];

FEL_phys_pos centroid;

FEL_cell max_cell;

FEL_cell_iter iter;

for (mag_grad_p_field->begin(&iter); !iter.done(): ++iter) {
mesh->coordinates_at_cell(*iter, coords);
centroid.set{0.0, 0.0, 0.0);

for (int i = 0; i < {*iter).get_n_nodes(); i++)
centroid += coords([i];
centroid /= (*iter).get_n_nodes{);
res = mag_grad_p_field—>at_phys_pos(centroid, &field_value);
if (res != FEL_QOK) continue;

cout << "Pressure gradient magnitude at " << *iter
<< " ig " << field_value << endl;
if (field_value > max_value) {
max_value = field_value;
max_cell = *iter;
}
}
cout << "Maximum of " << max_value << " in " << max_cell << endl;
return 0;

1.1. AN FEL EXAMPLE 13

The example demonstrates several key features of FEL. The first is mesh inden-
pendence — the same program works for fields based on a structured, unstructured, or
multi-zone mesh. The mesh independence is achieved via FEL iterators and file read-
ing functions that construct meshes and fields of the appropriate type. The particular
iterator used in the example, a cell iterator, loops over the (hexahedral or tetrahedral)
cells in a mesh. Using each cell, one can easily access mesh and field values. The
example also illustrates how FEL makes it easy for the user to compose new fields in
terms of existing ones. The field data in the example is known “solution data,” in other
words, data produced by a flow solver. Starting with a solution data field (g-field),
one can construct a pressure field, a gradient field and a gradient magnitude field, each
in one statement. The program also shows how one can access field values at arbitrary
positions using just one function call (at_phys_pos).

There are many other capabilities beyond those shown in the example, such as
support for time-varying fields and transformed fields. Rather than inventory all the
capabilities of FEL here, the remainder of this section walks through the first example
and mentions the chapters in this document in which to look for more information.

unsigned flags = FEL_deduce_mesh_type{argvil});
FEL_mesh_ptr mesh = FEL_read_mesh{argv([l], flags);
FEL_plot3d_g field ptr gq _field =

FEL_read_g(mesh, argv(2], flags);

The first four lines read in mesh and field data from the files named by argv (1]
and argv(2]. The program first uses the mesh type deducer function to deduce
flags indicating the particular file type (Chapter 22). FEL currently supports reading
PLOT3D files and “Enterprise” paged files. Mesh and field objects based on paged
files do not load the whole data set into memory, but instead work in a demand-driven
style where only subsets of the data are loaded as needed (Chapter 23). The user can
also read in data from a file in some other format and then construct meshes or fields
directly. (Chapters 12, 18).

Fields and meshes in FEL are reference counted. The FEL type names with the
_ptr suffix are all “smart pointers” that refer to reference counted objects (Chapter 7).
For the most part, the pointers behave just like C-style pointers. FEL also uses C++
templates, which support parameterized types. For instance, fields in FEL are parame-
terized by their node type (Chapter 17). FEL uses typedefs to hide many of the common
template instantiations, so that most FEL programs can be written without ever using
template syntax directly (Chapter 2).

FEL_float_field_ptr p_field =
FEL_plot3d_make_pressure_field(q field);

FEL_vector3f_field ptr grad_p_£field =
new FEL_gradient_of_float_fieldl(p_field);

FEL_float_field_ptr mag_grad_p_field = A
new FEL_magnitude_of_vector3f_field(grad p_field);

4 CHAPTER 1. INTRODUCTION

Here we create three derived fields from the fundamental solution data. The first
field uses a built-in function to convert PLOT3D solution vectors to pressure values
(Chapter 24). The second field applies a differential operator (“grad”) to the pressure
field, producing a vector field from a scalar field (Chapter 20). The third field takes
the norm of the gradient field, yielding a scalar field (Chapter 19). This progression
illustrates how FEL allows new fields to be defined in terms of preexisting ones.

The derived and differential operator fields require almost no storage, since all
values are computed on demand. This demand-driven or “lazy” evaluation approach
provides a significant advantage when working with large data sets, since the memory
and computational requirements of precomputing a derived value over a whole field
can be prohibitive.

mag_grad_p_field->set (FEL_SIMPLICIAL_DECOMPOSITION,O) ;
mag_grad_p_field->set (FEL_INTERPOLATION,
FEL_ISOPARAMETRIC_INTERPOLATION) ;

These directives tell FEL how to conduct some of its numerical business (Chap-
ters 9, 11). FEL supports several spatial interpolation modes (Chapter 9). The sim-
plicial decomposition flag controls whether FEL decomposes each mesh cell into sim-
plices (e.g., each hexahedron into tetrahedra) for cell-based operations such as interpo-
lation (Chapter 11).

int res;

float field value, max_value = 0.0;
FEL_vector3f coords[8];

FEL_cell max_cell;

In addition to meshes and fields, FEL provides a number of fundamental data types,
such as vectors (Chapter 3), positional classes (Chapter 6), and cells (Chapter 5). One
can also declare arrays these types. For instance, the coords array above can be used
to store the coordinates for each vertex of a cell.

fﬁi;ceil;iter iterr;r
for (mag_grad_p_field->begin(&iter); !iter.done(}; ++iter) {(

FEL supports a mesh-independent way to loop over the cells of a mesh: iterators.
Using an iterator, one can write algorithms that work with fields based on a variety of
mesh types, without having to provide conditional statements that are type-dependent

(Chapter 16). e T e

mesh->coordinates_at_cell(*iter, coords);
centroid.set (0.0, 0.0, 0.0);

for (int i = 0; i < (*iter).get_n_nodes{); i++)
__centroid += coords(i]; '

centroid /= (*iter) .get_n_nodéé();

1.2. A GRAPHIC EXAMPLE 15

A fundamental operation in FEL is querying a mesh for geometric information, in
this case the coordinates of the cell currently represented by the iterator. The coor-
dinates_at_cell call returns coordinates for each vertex of the cell (Chapter 11).
The cell, in turn, is queried for its number of nodes in order to calculate the centroid.

res = mag_grad_p_field->at_phys_pos(centroid, &field_value);
if (res != FEL_OK) continue;
cout << "Pressure gradient magnitude at " << *iter
<< " is " << field_value << endl;

if (field_value > max_value} {

max_value = field_value;

max_cell = *iter;
}

}

cout << "Maximum of " << max_value << " in " << max_cell << endl;

One key group of member functions on FEL fields are the “at” calls, which support
requests for field values. Some types of at calls merely retrieve field values at nodes,
while others, such as at_phys_pos support field value queries at arbitrary physical
positions. To comply with the at_phys_pos call in the example, FEL must find the
mesh cell containing (centroid) and then use the geometry of the cell and the field
values at its vertices to interpolate and get the £ield.value at centroid. FEL
provides alternate versions of at _phys._pos (via function overloading) where the user
can provide extra arguments intended to accelerate the point location (Chapter 11)or
interpolation (Chapter 17) steps.

—— --The at call returns 1 to signify success. It is possible that the at call in the example
could fail in some cases. For instance, if the cell containing centroid were at the
boundary of the mesh and had nonplanar faces, then the point location code might
conclude that the given point is outside the mesh. In general, it is important that the
user check the return value of the at calls in order to be assured that the field values
produced by the call are valid.

This example is representative of the sorts of things one can do with FEL. The re-
mainder of this document provides further details, options, examples, and possibilities.
The accompanying FEL Reference Manual provides a list of the FEL classes and a
summary of the public member functions for each class.

1.2 A graphic example

FEL per se does not do graphics, but some of the first applications written with FEL
do. Graphics are fun, so we include one figure illustrating the output of a visualization
tool called gel, which was written with FEL. Figure 1.1 is just a small taste of what
one can do with FEL; there will be more pictures to follow.

16 CHAPTER [. INTRODUCTION

Figure 1.1: A space shuttle launch vehicle visualization: the left side of the model
displays edges from the mesh, the rightside shows contour lines for a pressure derived
ficld. (Data by Pieter Buning. visualization courtesy of Tim Sandstrom.) E

1.3. FEL1 AND FEL2 17

1.3

FEL1 and FEL2

An initial version of the Field Encapsulation Library was first presented at Visualiza-
tion "96 [BKGY96). The library described in this document represents a fundamental
redesign and complete rewrite of “FEL1”. Some of the features that are new to the 2.0
release of FEL include:

14

derived fields, with demand-driven evaluation

built-in support for the over 50 standard derived fields defined by
PLOT3D [WBPES2]

differential operators, employing either first- or second-order techniques, also
with demand-driven evaluation

transformed meshes and fields

iterators

support for arbitrary field node type, based on C++ templates

an interface supporting the easy composition of fields

much better opportunities for code reuse in the development of new classes
support for a variety of cell types

multiple, user-selectable spatial interpolation modes

multiple, user-selectable simplicial decomposition modes

working set management of time-series data

temporal interpolation

significantly improved memory management, including reference counting for
meshes, fields, and interpolants

support for more mesh types, including regular and unstructured

support for surface meshes

additional file reading capabilities, including support for reading PLOT3D
“FORTRAN unformatted” files on either a workstation or Cray

support for the reuse of the interpolation data associated with a cell

integrated support for paged meshes and fields

Acknowledgements

We would like to thank the members of the NAS Data Analysis Group for their con-
structive feedback, patience, and encouragement during the FEL2 development pro-

CESS.

18

CHAPTER 1. INTRODUCTION

Chapter 2

Templates and Typedefs

FEL makes significant use of two C++ features—templates and typedefs—in order to in-
crease the flexibility and power of the library without decreasing ease of use. Typedefs
are available in C, thus they are likely to be familiar to many users. Templates, on the
other hand, are new with C++ and are probably less familiar to most. In FEL the two
features are used together in order to make it easy for the user to reap the benefits of
templates without having to learn template syntax.

2.1 Templates

Templates are a feature of C++ allowing one to implement algorithms and classes
where the specification of particular types is deferred. For instance, one could have
a linked list of objects where the object type is specified by a token “T”. The user
can then declare that he or she wants a list of objects of a particular type, for instance
float, by using the template syntax: list<float>. Informally, one can imagine
the compiler and linker working together to generate the code required by a particular
instantiation, such as a list of £1oats, by outputing customized source with the global
substitution £1oat for T, and then compiling the dynamically generated source. How
and when template code is actually instantiated varies from system to system. The user
experiences these differences as variations in how programs are compiled and linked,
but the variations do not change the style in which one writes applications using FEL.
. The most prominent use of templates in FEL is in the node type T of
FEL_typed.field<T>. Templates allow the library to use one common set of
classes for representing fields, regardless of field node type. There are two major ben-
efits of the templated node approach. The first benefit has implications primarily for
the user. The use of templated nodes means that one can create fields with node types
which are not built into the library, without modifying the library. For instance, a com-
putational scientist could create a scalar field where each scalar is represented by a dou-
ble by writing FEL.core_field<double>. (The class FEL_core.field<T> is
described in Chapter 18). The compiler and linker automatically handle generating the
appropriate code. One could also instantiate fields where the node type is a structure

19

20 CHAPTER 2. TEMPLATES AND TYPEDEFS

containing an aggregation of values, such as the solution vector used by a particular
solver.

A second benefit of the template approach impacts the developers of FEL more di-
rectly than the users. The templated field node type allows the consolidation of classes,
such as those for scalar fields and vector fields, which were formerly separate. This
consolidation has many positive benefits: templated fields mean that there is less li-
brary code to maintain, and bug fixes in the field classes do not have to be propagated
to fields of each node type variation.

2.2 Typedefs

Typedefs (provided by both C and C++) allow one to define convenient names for what
are typically more complicated types. In FEL, typedefs are used primarily to hide
template syntax from the users. For example, the statement:

typedef FEL_typed_field<float> FEL_float_£field;

makes it possible to write FEL_float_field where one would have to write
FEL_typed_field<float> without the typedef. Further typedefs are provided for
working with FEL_typed.field<float> instances. For example, the statement:

typedef FEL_pointer<FEL_typed field<float> >
FEL_float_field ptr;

makes it easy to declare a pointer to a float field (FEL_float.field.ptr) without
using the more verbose template syntax. FEL provides typedef names for the most
commonly used template instantiations; in.particular, the types related to float fields
and vector fields (where the vectors are composed of 3 floats) are included in the li-
brary. For many applications, one can use FEL without ever using template syntax. For
more advanced users, the option of going to template notation is always available. For
example, to instantiate a field with a new node type would require using at least some
template notation.

The typedef names built into FEL are described in the following chapters, intro-

Chapter 3

Vector and Matrix Classes

FEL provides basic vector and matrix support for the user. The support is primarily
for small vectors (2, 3, or 4 components) and small, square matrices. The vector and
matrix classes are written using C++ templates, and typedefs are provided for the most
commonly used instantiations.

3.1 The vector classes

The vector classes are as follows and are listed in Table 3.1. FEL provides specific
classes for vectors of length 2, 3, or 4, rather than using the arbritrary length vector
class FEL_vector<N, T>, for efficiency reasons.

The vector class typedefs built-in to FEL are listed in Table 3.2. The convention
for typedef names is to append the original templated class name by the vector length,
if not already provided, and a letter specifying the component type. The suffixes used
in FEL are i, f, and d, corresponding to the C types int, float, and double,
respectively.

FEL provides most of the basic math operators for the vector classes, so for exam-
ple, one can write statements such as:

float £f;
FEL_vector3f a, b;
FEL_vector3f c¢(1.0, 2.0, 3.0), 4(13.0, 17.3, 21.1);

[Class Description
FEL.vector2<T> | vector of 2 type T components
FEL_vector3<T> | vector of 3 type T components
FEL.vectord<T> | vector of 4 type T components

FEL.vector<N,T> | vector of N type T components

Table 3.1: The basic vector class templates.

21

22 CHAPTER 3. VECTOR AND MATRIX CLASSES

Typedef Template Class | Component Type |
FEL.vector2i | FEL.vector2<T> int
FEL_vector2f | FEL.vector2<T> float
FEL_vector2d | FEL.vector2<T> double
FEL.vector3i | FEL_vector3<T> int
FEL_vector3f | FEL.vector3<T> float
FEL.vector3d | FEL.vector3<T> double
FEL.vector4i | FEL.vector4<T> int
FEL.vector4f | FEL.vector4<T> float
FEL_vector4d | FEL.vectord<T> double

Table 3.2: The vector typedefs.

a=3*c+ d4;
b=a+c-d;
f = al0];

b[0] = 10.0;
b.set(10.0, 20.0 30.0);

cout << "a = " << a << endl;

The final statement shows the use of the C++ style output stream operator which
can be handy for writing out the contents of vectors, for example for debugging. See
the file FEL_vector.h for a complete listing of the operations supported for vector
objects. -

3.1.1 FEL vectors as arguments to other libraries

Occasionally, one may wish to use FEL vector values as arguments to routines provided
by other libraries. For example, one may want to make calls to OpenGL graphics
library routines taking vector arguments, without having to repackage the data into a
different structure. The FEL vector method v () returns a pointer which can be used
with routines requiring a C-style pointer to the beginning of an array. For instance:

FEL_vector3f v3£(1.0, 2.0, 3.0);
FEL_vector3d v3d(4.0, 5.0, 6.0);
glvertex3fv(v3if.v()};
glvertex3dv(v3id.v());

The v () method is defined in FEL_vector.h and should be easily inlined by
most compilers.

3.2 The matrix classes

FEL provides typedefs for the instantiations for float and double versions ofthe N x N
matrices, where N is 2, 3, 4, 5, 6, or 8. The suffix convention follows along the same

3.2. THE MATRIX CLASSES 23

| Class | Description]
FEL.matrix22<T> | 2 by 2 matrix of type T components
FEL.matrix33<T> | 3 by 3 matrix of type T components
FELmatrix44<T> | 4 by 4 matrix of type T components
FELmatrix55<T> | 5 by 5 matrix of type T components
FEL.matrix66<T> | 6 by 6 matrix of type T components
FELmatrix88<T> | 8 by 8 matrix of type T components

Table 3.3: The matrix templates.

lines as that used for vectors. For instance, FEL_matrix33f£ signifies a 3 by 3 matrix
with float components. Internally matrices are stored in row-major order, i.e., “C”
style rather than FORTRAN style. FEL provides the basic math operators for matrices
and for matrices with vectors, such as multiplication. The library also provides the
function FEL_invert for inverting matrices. The inversion code is written using an
analytical technique for FEL matrix22<T> and FEL_.matrix33<T>. For larger
matrices the library uses Gauss-Jordan elimination with partial pivoting. See the file
FELmatrix.h for a complete listing of the operations supported for matrix objects.

"v} Wiy

24

CHAPTER 3. VECTOR AND MATRIX CLASSES

Chapter 4

The FEL _time Class

FEL represents time using the class FEL_.time. A class is used to represent time,
rather than simply a C float or int, because there is more than one time representation
in which a suer may want to work. FEL_t ime supports 3 representations:

¢ physical
¢ computational
¢ integer computational

Physical time corresponds to the non-dimensional time used by the flow solver in an
unsteady flow simulation. Computational time corresponds to a temporal discretiza-
tion, where a time-varying data set is represented as a sequence of time steps. The
first time step would be at computational time O, the second at 1, and so on. The user
can request data at a computational time intermediate to the time steps by providing a
value with a fractional part; e.g., computational time 0.5 to get data temporally inter-
polated half way between the first and second time steps. Integer computational time,
also known as ‘“time step”, specifies a specific step in a time-series data set, without
temporal interpolation.

FEL.t ime contains a tag indicating the representation currently in use and a union
of an int and a float where the time itself is stored. By default the time representation is
FEL_TIME_REPRESENTATION_UNDEFINED. The user can set time using calls such
as set_physical. See FEL.time.h for the list of set_* and get_.* calls. In
most applications, one will typically work with one representation for time. Physical
time provides a representation that is independent of how a flow solver chose to save
snapshots through time, e.g., whether the data were written out at a fixed physical
time interval or at adaptive intervals. Working in terms of time steps makes it easy
for the user to access the data in a time series without regard to how the data are
positioned in physical time, e.g., to compute statistics over all the time steps. Floating-
point computational time supports the added flexibility of expressing times requiring
temporal interpolation.

25

26 CHAPTER 4. THE FEL_TIME CLASS

4.1 Multiple time representations: A caveat

In applications where one works with both physical and computational time simultane-
ously, there is a caveat. The class FEL_t ime defines the operator ==, i.e., an equality
test. When objects containing time, such as physical positions and vertex positions
(described in the following chapters), are compared for equality, they compare their
respective time values. Given a physical time value and a computational time value,
an FEL.time object would have to convert one representation to the other in order
to compare like representations. Unfortunately, FEL_t ime objects do not contain the
information necessary to map between physical and computational time. In general the
choice of which mapping to use is ambiguous, since there could be many time-varying
fields, and they may not all use the same mapping. FEL.time operator == returns
false if it cannot compare the times.

Mixing time representations in the arguments to FEL calls should not cause prob-
lems internal to FEL, to the best of our knowledge. Mixing time representions when
doing at_phys_pos calls may cause some minor inefficiencies, though it should
not cause the library to return incorrect answers. This case is revisited later when
we describe the use of at_phys_pos (Chapter 17). The time mixing caveat should
only be of concern to the user if he or she uses the == operator with the positional
classes described in the next chapter: FEL.vertex.cell, FEL.phys_pos and
FEL_structured.pos.

There is no easy solution to the **got one representation, need another, don’t know
how to convert” problem. The library could choose one time format to use throughout
the application programmer’s interface, but no matter what the choice, there will be
cases where the selected format is awkward for the user. Physical time is a higher-level
representation, but it is not convenient when one wants to loop over time steps. On the
other hand, some applications would like to treat an unsteady data set as continuous
in time and are not interested in how the samples were chosen, thus physical time is a
better choice than computational (or time steps). The FEL design opts for flexibility
and ease-of-use, at the risk of unexpected behavior in some obscure cases.

Chapter S

The FEL _cell Class

The FEL.cel1l class defines a general purpose object for representing cells, the basic
discretization building block for computational domains. FEL uses a general cell def-
inition, where cell types include vertices, edges, triangles, quadrilaterals, tetrahedra,
and hexahedra. Cells are used, for example, for point location: given a physical point
and a hexahedral mesh, the library can return a cell containing the point. The cell types
which can be represented by FEL_cell are listed in Table 5.1.

Cells may be grouped by their dimension and referred to as k-cells or k-
dimensional celis. Every cell type has an associated dimension, the Dimension column
of Table 5.1 lists the dimension for each cell type supported by FEL. Writing in terms
of k-cells is more convenient in some cases, for instance, one can speak of the pri-
mary cells of a surface being 2-cells, without having to distinguish between triangles,
quadrilaterals, or some other type of polygon.

An important concept related to cells is faces. A cell ¢ in a mesh M is the face
of another cell d in M if ¢ is defined by a subset of the vertices defining d. The most
common use of the term face is with hexahedral and tetrahedral cells: a hexahedron has
quadrilateral faces, and a tetrahedron has triangle faces. But the term is more general:
hexahedra and tetrahedra also have edge and vertex faces, even an edge has vertex
faces. The topic of cells, faces, and incidence relationships will be revisited in the
mesh chapter (Chapter 11).

Cell Type : Letter | Dimension | Vertices
FEL_.CELL_VERTEX v 0 1
FEL.CELL_EDGE E I 2
FEL.CELL.TRIANGLE F 2 3
FEL.CELL_QUADRILATERAL Q 2 4
FEL_CELL_TETRAHEDRON T 3 4
FEL_.CELL_HEXAHEDRON H 3 8

Table 5.1: The FEL cell types.

27

e

28 ' CHAPTER 5. THE FEL_.CELL CLASS

Name | Type Default

type FEL.cell._type.enum | FEL.CELL.UNDEFINED
subid | short -1

ijk FEL.vector3i (none)

zone | int ' FEL_ZONE_UNDEFINED
time FEL.time FEL._time ()

Table 5.2: The FEL_cell data members.

5.1 The cell data members

The 5 data members of an FEL_cell object are listed in Table 5.2. The type speci-
fies one of the types listed in Table 5.1, or FEL_.CELL_UNDEFINED. The zone would
specify a zone in a multi-zone mesh. Time is used when working with time-varying
data. The ijk and subid data members are used to specify a particular cell of a given
type. The particular usage of ijk and subid for each type of cell depends on whether
the mesh is structured or unstructured. See Chapters 12 and 13.

5.2 The FEL vertex_cell class

AnFEL_vertex_cell object represents a vertex in a mesh. The class is derived from
FEL.cell and can be used as an argument to any routine expecting an FEL_cell ar-
gument. The FEL_vertex_cell class exists in order to make the development of
algorithms written in terms of mesh vertices a bit easier. The class provides the oppor-
tunity to get some compile-time checking of routines which work only with vertices;
and FEL provides routines for vertex cells which have some slight optimizations over
the general cell routines.

Chapter 6

Positional Classes

The position of an individual point in space can be represented by an
FEL_vertex.cell, FEL_phys_pos,or FEL_structured pos object, see Ta-
ble 6.1. All three classes also contain a representation for time, so the objects in general
can represent a position in space and time.

6.1 FEL _vertex_cell

The FEL_vertex._cell class is used for specifying an individual vertex in a mesh.
FEL_vertex.cell is derived from the class FEL.cel1 and inherits most of its func-
tionality from the cell class. FEL_.cell and FEL_vertex_cell are described in the
previous chapter.

6.2 FEL _phys_pos -

An FEL_phys_pos object represents a position in physical space and time. One can
request field values at a physical position using statements such as:

int res;
float f£;
FEL_phys_pos p(l.2f, 3.3f, 0.0f);
res = float_field->at_phys_pos(p, &f);
if (res == 1) B)

cout << "the field at " << p << " is " << f << endl;

Class Derived From
FEL_vertex.cell FEL.cell
FEL.phys.pos FEL.vector3f
FEL.structured.pos | FEL.vector3f

Table 6.1: The FEL positional classes and their parent classes.

29

30 CHAPTER 6. POSITIONAL CLASSES

Since FEL_phys_pos is derived from FEL_vector3f, FEL.phys.pos can be
used as with routines expecting an FEL_vector3f argument; the time component
of the FEL_phys_pos is ignored. For example, to get the physical coordinates at a
vertex, one could write:

mesh->coordinates_at_vertex_cell (vertex_cell, &phys_pos);

One can also use FEL_phys.pos objects with the mathematical operators += and
- =, where the right-hand-side argument is of type FEL.vector3£. For instance, one
could add to the spatial coordinates of a physical position by writing:

FEL_phys_pos p(10.0f, 11.0f£, 12.0f);
cout << "before: " << p << endl; -
p += FEL_vector3£{1.1f£, 2.2f, 3.3f);:
cout << "after: " << p << endl;

The statements with cout illustrate the use of the C++ ostream operator defined for
FEL.phys_pos. The ostream operator displays the physical coordinates; the time
is also displayed if it is defined. The output from the statements above would look like:

before: (10, 11, 12)
after: (11.1, 13.2, 15.3)

6.3 FEL _structured_pos

The class FEL_structured.pos represents positions in structured meshes de-
scribed by floating-point i, j, and k values. FEL.structured.pos val-
ues are sometimes known as “computational coordinates”, though they are only
applicable to structured meshes (or a structured zone in a multi-zone mesh).
FEL.structured_pos objects also contain an integer zone value and time. The
zone comes into play when working with FEL multi _mesh objects, and time is rel-
evant to time-varying objects.

6.4 FEL _vector3f._and_int

The FEL_vector3f.and.int class, as its name suggests, represents objects con-
sisting of a vector of 3 floats and an integer. The FEL.vector3 f.and.int
class is used primarily for working with meshes that include what is known
in PLOT3D data sets as IBLANK [WBPE92]. IBLANK values are inte-
gers, one per vertex. Users see the FEL.vector3f.and.int type in the
mesh calls coordinates.and.iblank.at_vertex.cell() and coordi-
nates.and.iblank.at.cell (). See Chapter 11 for more on these routines.

Chapter 7

Memory Management

FEL allocates and deallocates memory using the standard C++ new and delete oper-
ators. In general, FEL objects that allocate memory are also responsible for deallocat-
ing the same memory. Likewise, memory allocated by the user is the user’s responsibil-
ity for deallocation. There is one key exception to this convention with FEL: memory
allocated for buffers passed to constructors of mesh and field subclasses becomes the
responsibility of FEL to deallocate. For instance, a buffer with float values passed to
the constructor of an FEL_core_float_field would become the responsibility of
the core field to deallocate when the core field is destructed. Users who work solely
with meshes and fields constructed via the file reader functions (see Chapter 22) do not
have to be concerned with this issue, since the the convenience functions allocate and
pass the buffers appropriately. If the user constructs a mesh or field explicitly, providing
data buffer arguments, then it necessary that the buffers be allocated using the C++ new
[] operator, i.e. the C++ operator for allocating arrays of objects. This requirement
is necessary because ultimately FEL will deallocate the buffer using the C++ delete
[] operator, and in general it is hazardous to allocate memory in one manner (e.g.
malloc) and deallocate in another (e.g. delete []). With FEL.core.fieldin-
stances, the user also has the option of providing a flag that will suppress the field’s
attempt to deallocate the solution data buffer. In this case, how the buffer was allocated
is irrelevant to FEL, and the ultimate responsibility for deallocating the buffer would
remain with the user.

7.1 Reference counted objects and pointers

Reference counting is a technique for tracking the number of references to each object
in a set of objects. Reference counting supports sharing objects and the detection of
a safe time to deallocate an object (i.e., when the number of references to an object
goes to 0). In FEL, the most prominent use of reference counting is for mesh and field
instances. Reference counting allows the user to create meshes and fields and then
build additional fields, such as derived fields and differential operator fields, in terms
of the original fields. The reference count book-keeping is done transparently. The

31

32 CHAPTER 7. MEMORY MANAGEMENT

reference counting frees the user from some relatively tedious and error prone work
and in general is unobtrusive.

FEL uses two classes that work together to implement reference counting:
FEL_reference_counted.object and FEL.pointer<T>. The FELmesh
and FEL_field classes inherit from FEL_reference.counted.object. The
FEL_pointer<T> class is used to represent references to an object derived from
FEL_reference.counted.object. The template type T stands for the particular
class being pointed to, e.g., FEL.mesh. FEL provides typedef names for most point-
ers to reference counted objects, using the convention that pointer names take the class
name of the object pointed to and append ”_ptr”. For example, FEL.mesh._ptr and
FEL_float_field_ptr represent pointers to meshes and float fields. The pointer
class provides definitions for the operations that can potentially change the reference
count of an object. For instance, FEL_pointer<T> defines an assignment operator,
so that when one pointer is assigned to another, one reference is potentially incremented
and one is potentially decremented. We say “potentially” since pointers can have the
value NULL, and no counts need to be changed when a pointer has a NULL value.

The FEL_pointer<T> class is designed so that one can use pointer instances in
a manner similar to raw C-style pointers, e.g., one can write statements using ”'->"
syntax. There are a few cases where FEL pointer instances differ in usage from raw
pointers:

o default initialization

e casting

comparisons with NULL

deleting

FEL pointers, unlike raw C-style pointers, are guaranteed to always be initialized to
NULL by default. This difference is not necessarily noticeable to the user, since one
can still manually initialize pointers as one would do with raw pointers.

A second case where FEL_pointer<T> instances differ from raw pointers is in
downcasting. For example, one may have a pointer to an FEL._mesh, but what one may
need is a pointer to an FEL.structuredmesh, in order to access a method that is
specific to structured meshes. With raw pointers one could write:

FEL_mesh* mesh;
FEL_structured_mesh* structured_mesh;

structured_mesh = (FEL_structured_mesh?*) mesh;

Unfortunately, if FEL.mesh* and FEL.structuredmesh* were replaced by
FEL.mesh ptr and FEL_structured mesh_ptr, the previous excerpt would not
work. The cast fails because FEL_mesh_ptr (i.e., FEL_pointer<FEL.mesh>)
technically is not a C pointer; there is no direct conversion from FEL.mesh.ptr to
FEL_structuredmesh.ptr (ie., FEL_pointer<FEL.structured.mesh>).
The cast can be accomplished, but the required syntax is awkward. For the previous
example:

7.2. REFERENCE COUNTING AND MUTUAL EXCLUSION 33

FEL_mesh_ptr mesh;
FEL_structured_mesh_ptr structured_mesh;

structured_mesh = (FEL_structured_mesh*) (FEL_mesh*) mesh;

The less-than-obvious syntax is one motivation for providing downcasting macros for
the user. See the following chapter for a list of the casting macros provided by FEL
and some additional motivation for using the macros.

A third case where FEL_pointer<T> instances differ from raw pointers occurs
when testing whether or not a pointer has the value NULL. FEL_pointer<T> class
has the member function null () that can be used for this purpose, for example:

FEL_mesh_ptr mesh; // default initialization
assert(mesh.null());

... assign non-NULL value to mesh
assert (i!mesh.null());

Two FEL_pointer<T> instances (both instantiated with the same type for T) can
also be tested for equality or lack there of using the == or ! = operators.

FEL pointer objects differ from raw pointers in a fourth respect: deletion. Whereas
in general one can call delete directly on a heap allocated object, the equivalent
statement will not work with an FEL pointer instance. In a sense, this should not
be surprising, reference counting takes responsibility for deallocating an object when
there are no more references; the user should not have to take the same responsibility.
Nevertheless, there are a few occasions where the user may want to cause the deallo-
cation to happen sooner. For example, one may want to free memory used by a large
mesh or field that one knows will not be used again. One can do this indirectly by
assigning NULL to FEL pointers. Assuming that there are no other references to the
mesh or field, assigning NULL to the remaining reference will decrement the count to
0 and induce the reference counting mechanism to do the deallocation.

Finally, some readers might observe in the previous discussion that it is possible
to obtain the raw pointers to reference counted objects. One may be tempted to do
this, since users are more familiar with C-style pointers and casting than the refer-
ence counting support classes of FEL. One should, however, resist this temptation. ‘
Reference counting requires little overhead, so performance is typically not an issue.
Furthermore, the reference counting mechanism provided by FEL is robust, but all bets
are off if one breaks through the abstraction and starts handling raw pointers directly.
The potential consequences for defeating the reference counting are memory misman-
agement bugs which can be very difficult to track down.

7.2 Reference counting and mutual exclusion
The FEL reference counting mechanism is also designed to support the use of reference

counted objects in a multi-threaded environment. Ina multi-threaded scenario, it is pos-
sible that several threads can take actions that change the reference count of a shared

34 CHAPTER 7. MEMORY MANAGEMENT

object, such as mesh or field. Such actions include assigning one FEL_pointer<T>
instance to another or passing a pointer object to a subroutine. Since such actions can
take place simultaneously, it is important that the changes to the reference counts be
made atomically. In other words, only one thread should be able to change the count
at one time. FEL provides reference counting with critical section protection for count
changes via the class FEL.mutex_reference.counted object which is derived
from FEL_reference_counted.object. The "mutex” version of the class uses
a locking primitive provided by the task synchronization library (TSL.mutex) to en-
sure mutual exclusion. Meshes, fields, and interpolants in FEL are all derived from
FEL mutex_reference_counted_object, thus the reference counting for those

objects should still work reliably in multi-threaded applications.

Chapter 8

‘Dynamic Casting

There are occasions when one has a pointer to a base class, but what one needs is a
pointer to a class derived from the base class. For example, one may have a pointer
to a mesh: FEL_mesh_ptr, but need a pointer to a structured mesh (a subclass of
mesh): FEL_structured.mesh.ptr. The typical case where a pointer to a subclass
is necessary arises when one needs to call a method that is available only from the
subclass, for instance a method specific to structured meshes. Casting from one type to
another type that is lower in the same class hierarchy is known as downcasting. FEL .
is designed to try to minimize the amount of downcasting required, nevertheless there
are still cases where it is necessary. One hazard of downcasting is that it is possible
to do it incorrectly, e.g., if the mesh pointer were referring to an unstructured mesh, a
structured mesh cast would lead to dire consequences. Unfortunately, incorrect casts
in general cannot be detected at compile-time; it is not until run-time that they become
apparent. o

C++ provides a standard way to downcast safely: dynamic casts. Using a dynamic
cast, one can downcast a pointer to a particular subclass. If the cast is legal, then the
result is a pointer to the subclass; if the cast is not legal, then the result is NULL. Thus
one can downcast and then check if the cast completed successfully before continuing.
Dynamic casting is a relatively new C++ feature, and it is not supported by some older
compilers. FEL provides macros that behave like dynamic casts for the most com-
mon casts of FEL objects. The naming convention for the casts is FEL.f . TO_£_.CAST,
where an FEL pointer to a type f cast to an FEL pointer to a type . For example
FEL._MESH_TO_STRUCTURED MESH_CAST() takes an FEL.mesh_ptr argument
and returns an FEL_structured.mesh_ptr, or NULL if the cast is not legal. One
difference between the FEL macros and C++ dynamic casting comes in the case where
the argument is a NULL pointer. The C++ standard dictates that the dynamic cast
of a NULL pointer should cause an exception, the FEL macro simply returns NULL.
Table 8.1 lists the casting macros provided by FEL. Though there are many macros
defined by the library, the need for them in user code is relatively infrequent. As the
design of the library evolves, we are working towards further reducing the need for
downcasting calls.

35

WS

36 CHAPTER 8. DYNAMIC CASTING

Cast

FEL_OBJECT_TOMESH_CAST()
FEL_OBJECT_TO_FIELD.CAST()

FEL MESH_TO_STRUCTURED MESH_CAST ()

FEL MESH_TO_UNSTRUCTURED.MESH_CAST()
FEL_.FIELD_.TO_FLOAT_FIELD.CAST()
FEL_FIELD_TO_VECTOR3F.FIELD.CAST()

FEL_FIELD_ TO.PLOT3D_Q.FIELD.CAST()
FEL_FIELD.TO-CORE_FLOAT FIELD._CAST()
FEL.FIELD_TO_CORE_.VECTOR3F.FIELD_CAST ()

FEL FIELD.TO.TIME_SERIES_FLOAT.FIELD.CAST()
FEL FIELD.TO_TIME.SERIES.VECTOR3F.FIELD.CAST()
FEL_FIELD.TO.TIME_SERIES_PLOT3D.Q.FIELD CAST()
FEL_INTERPOLANT.TO HEXAHEDRAL_TISOPARAMETRIC.CAST ()

Table 8.1: The FEL dynamic casting macros.

User code with an FEL dynamic cast macro would typically look like:

FEL_mesh_ptr mesh;
FEL_structured_mesh_ptr structured _mesh;

structured_mesh = FEL_MESH_TO_STRUCTURED_MESH_CAST (mesh) ;
if (!structured_mesh.null()) {

}
else ({
error

}

There is a second reason for the use of macros with downcasting. Pointers to FEL
meshes and fields are not raw C-style pointers; rather the types such as FEL mesh ptr
or FEL_float_field_ptr are typedef names for FEL.pointer objects. The
classes FEL_pointer and FEL_reference_counted._object are used together
to provide reference counting support in FEL (as described in the previous chapter).
Unfortunately, straight-forward C-style downcasting does not work with FEL pointers,
though it is still possible to downcast using a more arcane syntax. The macros are
intended to hide that syntax.

Chaptér 9
Interpolation

One of the most useful features of FEL is that it allows gridded, spatially discrete data
to be treated as a continuous domain. In fact, this capability supports the key abstrac-
tion of a field and is one of the primary aims of the library. The central mechanism
underlying the field abstraction is spatial interpolation. FEL supports temporal inter-
polation, too; this is described separately in Chapter 25.

9.1 Setting interpolation modes

In FEL, queries for field values at arbitrary physical space locations (i.e.,
at_phys_pos (), see Chapter 17) invoke a point location algorithm which finds the
mesh cell containing the query point. FEL then uses the geometry of this cell, and the
field values at its vertices, to determine a field value at an interior point. The last step
can be done in one of three ways, and you tell FEL which method you want with a set
" command.

FEL_mesh_ptr mesh; // defined elsewhere... _

mesh->set (FEL_INTERPOLATION, FEL_NEAREST_NEIGHBOR_INTERPOLATION) ;
mesh->set (FEL_INTERPOLATION, FEL_ISOPARAMETRIC_INTERPOLATICN) ;
mesh->set (FEL_INTERPOLATION, FEL_PHYSICAL_SPACE_INTERPOLATION) ;

These set calls are really methods on FEL.mesh, but you can also call them on
any field, and it will simply forward the call to its mesh. Note that however it is set,
the interpolation mode on a mesh affects all fields based on that mesh. This rather
unfortunate state of affairs will be amended in a future release of FEL so that fields will
be less dependent entities. In the meantime, if you want different interpolation modes
on fields sharing a common mesh, set the interpolation mode just prior to querying
the field — but be aware that this may not be a robust strategy in a multithreaded
application.

The interpolation modes work in concert with the simplicial decomposition mode,
since the cell type which the interpolation routines receive may be altered by simplicial

37

38 CHAPTER 9. INTERPOLATION

decomposition. (Details on simplicial decomposition may be found in Chapter 12.)
Thus the three interpolation modes listed above, combined with the three choices for
simplicial decomposition —

// setting decomposition off, even and odd:
mesh->set (FEL_SIMPLICIAL_DECOMPOSITION, O0);
mesh->set (FEL_SIMPLICIAL_DECOMPOSITION, 1);
mesh->set (FEL_SIMPLICIAL_DECOMPOSITION, 2);

— form a 3 x 3 matrix of possibilities. If you don’texplicitly set them, the interpolation
mode defaults to FEL.ISOPARAMETRIC._INTERPOLATION, and “‘even” simplicial
decomposition is turned on (FEL_SIMPLICIAL DECOMPOSITION, 1). The dif-
ferent combinations of interpolation and simplicial decomposition may produce quite
different numerical results on the same dataset, and they vary widely in the amount of
numerical work involved. A few general considerations about choosing these modes
are presented below (and see [KL95] for a comparison of isoparametric and physical
space interpolation methods on tetrahedra), but for the most part, the choice is context
dependent.

The combination of interpolation and decomposition modes affects the differential
operator fields, since they obtain their required spatial derivatives by analytically dif-
ferentiating the interpolating polynomials. This is the case even when the differential
operator fields are queried at a vertex. For more information on the differential operator
fields, see Chapter 20.

9.2 Nearest neighbor interpolation

FEL_NEAREST .NEIGHBOR_INTERPOLATION really doesn’t do interpolation,
rather it assigns to an interior point the field value of the nearest vertex of the en-
closing cell. This “interpolation” method is the fastest of the bunch, but obviously not
very smooth.

9.3 Isoparametric interpolation

FEL_TSOPARAMETRIC.INTERPOLATION transforms the enclosing cell and the
query point into computational space and then interpolates a field value at the query
location using linear basis functions. If the cell is a tetrahedron, the physical to compu-
tational space transformation of the query location is done analytically. For hexahedra,
however, the physical to computational space transformation of the query location must
be done numerically, using Newton’s method, and this requires evaluating and inverting
the Jacobian matrix for each iteration.

In computational space, the coordinates of the query point are £, 7, {, and the field
value f = f(£,n, (). Field values at cell vertices are referred to as f,,, where n ranges
from O to 1 less than the number of nodes in the cell.

For tetrahedra, we use the linear basis function:

M) =00-€(-n=-QOfco+téf+nf2+(fs

9.4. PHYSICAL SPACE INTERPOLATION , 39

and for hexahedra:

F(&n,¢) 1-1-n(1-Cfo

+ EL-nm(1-0h
+ (1=&EOn(1 - Q) f2
+ En(1-Q)fs
+ (1-8(1-n)fs
+ &1-n)fs
+ (1= &nCfe
+ EnCfr

9.4 Physical space interpolation

FEL_PHYSICAL_SPACE_INTERPOLATION solves for the coefficients of an interpo-
lating polynomial in physical space, using the locations and field values of the enclos-
ing cell vertices as constraints. The calculation does not involve arry physical to com-
putational space transformations, but it does require inversion of a 4 x 4 (tetrahedron)
or 8 x 8 (hexahedron) matrix.)

In physical space, the coordinates of the query point are T, y, z, and the field value
f = f(z,y, z). Coordinates of cell vertices are referred to as Z,,, Yn. 2n, and field val-
ues at the corresponding vertices are referred to as f,, where n ranges from 0 to 1 less
than the number of nodes in the cell. The coefficients of the interpolating polynomial
are referred to as ¢,,.
For tetrahedra, we use the interpolating polynomial:

flz,y,2) =co + 1z + cay + C32

and determine the coefficients by:

-1

co 1 zo Y 2o fo
a |_| 1 =1 nn & f1
2 | T |1 T2 y2 = f2
c3 1 z3 y3 z3 f3

For hexahedra, we use the interpolating polynomial:
f(z,y,2) =co + 1T + C2y + €32 + €4TY + C5T2 + CpY2 + CrTYZ

and determine the coefficients by:

&]

\er)\

Te¢ Ys 2 ZTelYs TeZs Y66 TeYsZs fe
Tr Y1 21 Iryr Trzr Yi¥r Tryrzr) \f7/

[co) (1 2o Y 2 ZoYo ToZo YoZo ToloZo \ [fo \
15} 1 zp 1 21 i Tz i1ar Tzt h
2 1 z2 y2 z2 ZToy2 T222 Y222 Z2Y222 f2
s | _| 1 73 ys 23 Zays Tazz Yazz T3YaZs f3
cq 1 T4 Ysa 24 ZTa¥s Ta2a YaZa T4lY424 fa
Cs 1 75 ys 25 Zsys Ts525 Yszs ZTsYs2s fs

1
1

40 CHAPTER 9. INTERPOLATION

The 4 x 4 and 8 x 8 matrices are inverted numerically, using Gauss-Jordan elim-
ination with partial pivoting. We then check the “standard” matrix condition number
using the infinity norm (|| A|oo || A~!{|oc), and if this exceeds 1e® we perform a singular
value decomposition, zero the singular values < le~3 and generate a pseudoinverse.
We found the SVD to be necessary, especially in the 8 x 8 case, as many common
data sets yield ill-conditioned matrices surprisingly often. The SVD routines will be
made more flexible in a future release of FEL, with user-settable options replacing the
hardcoded invocation and parameters. See, for example, [PTVF92] to learn more about
SVD and related numerical issues.

Although the matrix inversions involved in the physical space interpolation routines
are expensive, especially if the SVD routines are invoked, the inverted matrices are
determined purely by the geometry of the cell. They can be reused for successive local
interpolations on the same or a different field if the successive queries all fall in the
same cell. The inverted matrix is cached in the FEL_cell_interpolant which can
be resubmitted as part of an at_phys.pos () query. See Chapter 17 for details on the
several variants of-at_phys.pos (). ’

Chapter 10

Meshes and Fields

The heart of FEL is composed of mesh and field objects; the majority of the following
chapters of this document will be on topics related to these two key types. Most of the
common interface for meshes is defined by the class FEL_mesh (Chapter 11). Most of
the interface for fields is defined by the classes FEL_field and FEL.typed-field
(Chapter 17).

One goal in the design of FEL is that applications written in terms of the standard
interfaces should work with a variety of mesh and field types. For example, a visual-
ization technique written for scalar fields should work just as easily with a field where
values are computed on demand, such as a derived pressure field (Chapter 19), as with
a field where the data are precomputed and stored in memory (Chapter 18). The same
code should also work with many other types of fields, such as those where data are
paged in from disk on demand (Chapter 23) or fields that vary with time (Chapter 25).

While it is not hard to see the virtues of code reuse, it is not as easy in practice
to design interfaces that make such reuse straightforward for the user. Even with the
best of interfaces, it still may take some effort on the user’s part to think in more
general terms. Not every mesh is structured, not every field is steady. In general, the
development of truly mesh and field type-independent algorithms requires effort on the
part of both the FEL design team and the user. Making mesh and field independent
interfaces and algorithms a reality continues to be a learning process for us all.

10.1 Member function style

The member functions of the mesh and field classes follow a general style where input
arguments come first, followed by arguments pointing to the location where results
should be written. The input arguments typically are C++ const references, so that
their intended use should be clearer to the user, and so the compiler may have more
opportunities to optimize. Most member functions return an integer indicating whether
the call was successful. We look at the return values in a bit more detail next.

41

42 7 CHAPTER 10. MESHES AND FIELDS

10.2 Return values

Most mesh and field member functions return an integer status value. The value can
indicate success (FEL_OK) or it can indicate one of a variety of errors. The complete list
of return values can be found in FEL_returns . h. One should use the names defined
in FEL_.returns. h rather than integer values explicitly, so that in the unlikely case
that return codes get renumbered, one’s code will still work. One return value where
even the best of FEL programmers have lapsed into using the integer value directly is
FEL_OK. FEL_OK is equal to 1. The interchangeability of | and FEL.OK is so ingrained
in the FEL programming style that it is safe to assume that the number and symbol will
be bound together for all time.

We conclude this chapter by strongly encouraging the users of FEL to check return
values. There are two main reasons why one should get into this habit. First, if one is
serious about developing algorithms that are mesh and field type-independent, then it
is hazardous to assume when using some member function that “this call cannot fail”.
Even though there are already a large number of mesh and field types, it is easy to fall
into the trap of thinking in terms of just one particular type. Even if one does consider
all the ways that a call can fail, based on the types available in FEL today, one is still not
completely safe. In the future there will surely be more mesh and field types introduced
into the library. Algorithms written with careful error checking now should at least be
able to gracefully indicate that they cannot work with a new type in the future.

A second reason to be conscientious about return value checking is that not doing
the checking can lead to potentially insidious bugs. Since most member functions work
by writing their results into a location passed into the call, one always has something in
result location, whether or not the call succeeded. In some cases it may be obvious that
the result location contains junk, but at other times the contents may seem plausible.
For example, the result may contain a value from a previous, successful call. Checking
return values is the only reliable way to guard against this type of problem.

Chapter 11

Meshes

Meshes are one of the two key types of objects in FEL, the other being fields. Meshes
represent discretization of a domain into a set of cells. The cell types are drawn from
the types represented by the class FEL_cell: vertices, edges, triangles, quadrilaterals,
tetrahedra, and hexahedra. In an FEL mesh, it is assumed that a mesh containing a cell
¢ also includes all the faces of c; so, for example, a mesh with a hexahedron ¢ would
also have all the quadrilateral, edge, and vertex faces of ¢. Meshes contain both geo-
metric and topological information. Geometric information includes the coordinates of
vertices and the volume of cells. Topological information includes neighbor relation-
ships among the cells and other data about how the cells are organized. For example, a
mesh containing a tetrahedron ¢ can return the triangle faces or vertices of c.

In FEL, meshes are essential to the construction of fields, since every field has a
mesh. For fields, meshes specify the location of nodes. Nodes are the points in the do-
main where solution values are generated by the solver or acquired by experiment. FEL
supports vertex-centered fields, in other words fields where a node is associated with
each vertex. There are other organizations for nodes; for instance, a hexahedral mesh
may be “cell-centered”, i.e., a node is associated with the interior of each hexahedron,
but such configurations are currently unsupported by FEL.

One key responsibility of meshes is point location. Given a point p and a mesh
containing some type of 3-cells, such as tetrahedra or hexahedra, the result of point
location will be an integer return code and, if the location effort is successful, a cell
containing p. The concept of point location in FEL has been generahzed to meshes
which do not contain 3-cells. For instance, FEL can represent surfaces in R? consisting
of triangles or quadrilaterals (2-cells). Point location with a surface mesh returns a
2-cell from the mesh. See Chapter 12 for details of how point location is defined
for surfaces. Efficient point location is one of the keys in FEL to providing good
performance overall.

A second key responsibility of meshes is to assist with interpolation. Given the cell
¢ resulting from point location, a mesh can construct an “interpolant” for use later in
interpolation. The interpolant contains information based on the geometry of ¢. The
specific information contained in an interpolant depends upon the type of interpolation
that the user has selected. For example, if ¢ is a tetrahedron, and the prevailing inter-

43

44 CHAPTER 11. MESHES

polation mode is isoparametric, then the interpolant would contain the basis functions
required to linearly interpolate within c. See Chapter 9 for more detail on interpolants.

11.1 The mesh class hierarchy

Figure 11.1 illustrates the class hierarchy for FEL meshes. FEL.mesh inherits from the
class FEL.mutex._reference_counted._object, therefore meshes are reference
counted in FEL, and there is critical section protection for the reference counting so that
they can be used in multi-threaded applications. FEL.mesh specifies the interface that
all mesh classes inherit. The mesh class also provides implementation of routines that
are used by many of the mesh subclasses. Key subclasses of FEL.mesh are described
in the following chapters.

11.2 Setting and getting mesh properties
FEL meshes support a general “set” interface for setting mesh properties:
void set{const FEL_set_keyword_enum k, int v);

The set call takes a keyword k and a value v; the complete list of keywords can be
found in the file FEL_set_keywords.h. There is also a general “get” member
function:

int get{const FEL_get_keyword_enum k, int* nv, int v[},
int zone = FEL_ZONE_UNDEFINED) const;

The get call takes a keyword k and fills in *nv integer values into the array v. Note
that some properties, such as the dimensions of a structured mesh, require more than
one integer to describe. In most cases the user will know how many integers are needed
to describe a patticular property, i.e., how many values will be written into v. In those
cases the user can pass the value NULL for the nv argument. The get function takes an
optional final argument specifying a zone. Using the zone argument with get allows
one to make queries of a particular zone in a multi-zone mesh. The get call returns 1
for success or an error value otherwise.

11.3 Simplicial decomposition

Some algorithms work in terms of the cells of a mesh, but require that the cells be sim-
plices, i.e., that the cells be vertices, edges, triangles, or tetrahedra. FEL supports emu-
lating the decomposition of a mesh into simplices through what is known as “simplicial
decomposition”. We say “emulating” because internally FEL does not change the rep-
resentation of the mesh when simplicial decomposition is requested; it only changes
the type of cells returned by methods such as point location. Currently only structured
meshes contain non-simplicial cells (quadrilaterals and hexahedra), thus the following
discussion only applies to structured mesh types. In the future other mesh types may

11.3. SIMPLICTAL DECOMPOSITION 45

JFEL_muiti_mesh |—{FEL_plot3d_muiti_mesh |

' FEL_remote_mesh

JFEL _scattered_vertex_mesh |

JFEL_cunvilinear_mesh_xyz_layout |

JFEL _cuvilinear_mesh_xyzi_layout |

FEL_curvilinear_mesh_xyzi_fleld_layout |

FEL_curvilinear_mesh

FEL_curviinear_mesh_time_series_layout |

FEL_single_mesh f—{FEL_structured_mesh FEL_curvilinear_surfaca_mesh |

—— “FL_mesh {FEL paged_auviinear_mesh_xyz }-—{FEL_paged_curviineas_mesh_xyzI |

FEL _regular_mesh

YFEL_axls_allgned_mash FEL_reguiar_xy_iregulas_z_mesh |

FEL_regular_mash2

{FEL _unstructured_mesh |—s[FEL _tetrahedral_mesh |

FEL _x_rotated_mesh

FEL_rotated_mesh FEL_y_rotated_mesh |

{FEL _transformad_mesh

FEL_z_rotated_mesh

FEL_lransiated_mesh

Figure 11.1: The FEL mesh class hierarchy.

46 CHAPTER 11. MESHES

also contain non-simplicial cells, but the interface for controlling the decomposition
will be the same.

In general there is more than one way to subdivide a non-simplicial cell into sim-
plices, even if one is not allowed to introduce new vertices as part of the subdivision.
A quadrilateral can be broken into triangles in one of 2 ways, depending upon how
the diagonal is chosen. There are 2 ways to decompose a hexahedron into 5 tetrahedra
and many more decompositions consisting of 6 tetrahedra. A typical requirement is
that the cells be decomposed consistently; in other words, if there is a non-simplicial
face shared by two cells, then the decomposition chosen for each cell must result in the
same decomposition for the shared face. The issue of consistent decompositions in FEL
arises with structured hexahedral meshes, since adjacent hexahedra share quadrilateral
faces. FEL supports 2 consistent simplicial decompositions for structured meshes, to
be described in the next chapter. FEL also provides the call b

int decomposition_cells(const FEL_cell c&,
’ int* nsc, FEL_cell sc{]) const;

which takes a non-simplicial cell ¢ as an argument and returns nsc simplicial cells sc
that ¢ would be subdivided into, using the prevailing simplicial decomposition setting.
(The user can query about the prevailing decomposition mode using the get member
function described above.) The result of decomposition_cells is undefined if
simplicial decomposition is not on when the call is made.

To set a particular value for simplicial decomposition, one can use the call
set (FEL_SIMPLICIAL DECOMPOSITION, i) on a mesh, where i would have
the value 0, 1, or 2. The value O signifies that simplicial decomposition should be
turned off. Values 1 and 2 each set one of 2 alternate decompositions for structured
meshes.

11.4 Point location and interpolation

FEL meshes all inherit the following interface for point location:

int locate_close_vertex_cell (const FEL_phys_pos& D,
FEL_vertex_cell* v) const;
int locate(const FEL_phys_pos& p, FEL_cell* c) const;
int locate({const FEL_phys_pos& p, FEL_cell& start_cell,
FEL_cell* ¢) const;

The locate_close vertex.cell returns a vertex v that is close to p. The vertex
is not guaranteed to be the closest, but sometimes close is good enough. The locate
member functions are the workhorse routines for point location. Given a point p, 1o-
cate produces a cell c. For most meshes, c is a hexahedron or tetrahedron containing

IFor those less familiar with C++ notation, the const keyword may be new. When the keyword is part
of an argument declaration, then const indicates that the function will not modify the argument. When
const follows the closing parentheses of a class member function declaration, then const specifies that
calling the function will not change the state of the object.

11.5. COORDINATES 47

p. For other types of meshes, such as surface meshes, ¢ may be a quadrilateral cell or
triangle cell close t0 p.

The second locate routine takes an extra start_cell argument.
For several key mesh types, such as FEL.curvilinearmesh and
FEL_unstructured mesh, a point is located by “walking” from cell to cell,
until a result cell is found. If a start_cell argument is provided, then it is used
to initialize the walking point location routine. Providing a start cell can significantly
improve the point location performance if the cell is close to the given point.

An FEL_interpolant contains information based on the geometry of a cell
used for interpolation. An interpolant is specific to a particular cell, and an
FEL.cell_interpolant pairs a cell together with its interpolant. Since meshes
contain cell geometric data, meshes are responsible for initializing interpolants. Ini-
tialization is done through the member functions:

int set_interpolant (FEL_cell_interpolant*) const;
int set_interpolant{const FEL_cell_interpolant& pci,
FEL_cell_interpolant* ci) const;

int locate_and_set_interpolant(const FEL_phys_pos&,
FEL_cell_interpolant*) const;

int locate_and_set_interpolant{const FEL_phys_pos&,
FEL_cell_interpolanté&,
FEL_cell_interpolant*) const;

The second set.interpolant call provides the opportunity to reuse the interpolant
loaded by a previous set_interpolant call, if the cell in ci is the same as in
pci, and the interpolation mode (e.g., isoparametric) is the same. The latter two calls
combine point location and setting an interpolant into one call.

11.5 Coordinates

The user can access the coordinates v of the vertices of a cell ¢ via the calls:

int coordinates_at_cell (const FEL_cell& c,
FEL_vector3f v([]) const;
int coordinates_at_vertex_cell (const FEL_vertex_cells& c,
FEL_vector3f* v) const;

One can also convert between a structured mesh position s and physical coordinates
via the call:

int coordinates_at_structured_pos(const FEL_structured_pos& s,
FEL_vector3f* v) const;

Since the structured position includes a zone number, the “at structured pos”™ call can
also be made on a multi-zone mesh, as long as the specified zone is structured. If the
call is made on a mesh that does not have structured behavior, then the return value of
the call will not be equal to 1.

48 ’ CHAPTER 11. MESHES

11.6 Cell geometric properties

The member functions which answer queries regarding the geometric properties of
cells are relatively self-explanatory:

bool cell_has_collapsed_edge({const FEL_cell&) const;
int volume_of_cell(const FEL_cells, double*) const;
int centroid_of_cell(const FEL_cellg,
FEL_vector3f*) const;
int longest_edge_length_of_cell(const FEL_cellé,
float*) const;
int closest_vertex_of_cell (const FEL_phys_posk,
const FEL_cellk,
FEL_vertex_cell*) const;

The cell has.collapsed._edge call tests whether two vertices on the same edge
have coordinates that are exactly equal; in other words there is no epsilon used in the
floating-point coordinate equality test to allow for nearly-equal values.

11.7 Cell incidence relationships

Given a cell ¢, an application may require cells incident to ¢. Two distinct cells ¢ and
d are incident if ¢ is the face of d or vice versa. For example, for a given triangle ¢ in
a mesh, one may need the vertices of ¢, or perhaps the tetrahedra for which c is a face.
The incidence relationships among cells can be visualized with a graph. Figure 11.2
illustrates the incidence relationships for a small mesh in R?. The graph to the right
contains a node for each cell in the mesh to the left. The nodes are organized into rows,
each row containing cells of a particular dimension. The rows are ordered by ascending
dimensionality: higher rows signify higher-dimension cells. A mesh containing 3-cells
would have one extra row at the top. The example queries from above can be seen as
starting at a particular node and following paths downward or upward. For example, to
get the vertices of a triangle ¢, one could start at the node representing ¢ and follow all
the paths downwards. Likewise, in a mesh containing tetrahedra, one could start at a
node representing a triangle ¢ and follow the 0, 1, or 2 paths upward, depending on the
number of tetrahedra that have ¢ as a face. FEL meshes support queries based on cell
incidence relationships via the calls up_cells and down.cells:

int up_cells(const FEL_cell& ¢, int d, int max,
int* n, FEL_cell rc{], int = -1) const;
int down_cells{const FEL_cell& c, int 4, int* n,
FEL_cell rc{]) const;

Both calls take a cell ¢ as the first argument, and the dimension d of the cells one
wants in return as the second argument. Both calls write cells in the array rc. The
number of cells produced is written into n. The up_cells call also takes an argument
max, which specifies the maximum number of cells that the user wants back. The
terms “up” and “down” can be thought of either as going up or down in dimension,

11.8. ADJACENT CELLS 49

Figure 11.2: A small example mesh and its incidence graph.

or as going upward or downward in the incidence graph. In topology, the up and
down operations are known as star and closure, respectively. Note that the concepts
of incidence relationships and up and down calls are not specific to a particular type
of mesh; thus algorithms written in terms of up.cells and down.cells have the
potential of working with many types of meshes.

11.8 Adjacent cells

A concept related to the incidence relationships between cells is adjacency, also known
as a neighbor relationship. The mesh member function adjacent cells supports
queries requesting the cells neighboring to a given cell. The function signature for
adjacent _cellsis:

int adjacent_cells(const FEL_cell&, int*, FEL_cell []);

where ¢ is the cell for which to produce adjacent cells for, and nac and ac get the
number of adjacent cells and the cells themselves, respectively. The most frequent us-
age of the adjacent.cells call is with a 3-cell argument. For example, given a
hexahedron ¢ from a hexahedral mesh, adjacent.cells would return the hexahe-
dra which share a quadrilateral face with ¢. Likewise, given a tetrahedron ¢ from a
mesh (either a tetrahedral mesh or a hexahedral mesh with simplicial decomposition
turned on), adjacent_cells will return the tetrahedra which share a triangle face
with ¢. The adjacent_cells call is handy for algorithms that work breadth-first,
starting from a seed cell. For example, one could construct an isosurface incrementally,
processing cells outward from an initial 3-cell. '

The concept of adjacency has a more formal definition. First, returning to the graph
in Figure 11.2, imagine that each vertex is the face of a special (-1)-cell, i.e. that there
is an extra row beneath the vertex (O-cell) row with one node, and arcs from each
vertex to the (-1)-cell node. Furthermore, if the cells in the top row are k-cells, then
imagine an extra row above the k-cells with a single (k + 1)-cell that every k-cell is
the face of. Given this augmented incidence relationship graph, one can define the

50 CHAPTER 11. MESHES

adjacent cells of a cell ¢ via the up and down operations described above. Let S.d be
the set of cells produced by going up one dimension and then down one dimension,
starting with c. Let Sy, be the set of cells produced by going down one dimension and
then up one dimension, starting with c. The cells adjacent to a cell c are the cells in
(Sua N Sau) — ¢. (There are more efficient ways to implement adjacent cells,
the preceeding definition is useful for its generality).

11.9 Cardinality

Since meshes are finite collections of cells, one basic query that the user might make
is a count of the cells represented by a mesh. FEL provides this functionality via the
method card:

int card{int k) const:

Given an integer argument k, card returns a count of the k-cells in a mesh. For
instance, card(0) returns the number of vertices in a mesh. The value returned by
card depends on whether simplicial decomposition is turned on or off. For example, if
card(2) returns n when called on a structured hexahedral mesh with decomposition
off, then card (2) will return 2n when decomposition is turned on.

11.10 Cells and canonical enumeration

For the k-cells in a mesh, one can imagine assigning a numbering so that each k-cell
has a unique integer identifier. Such an enumeration could be handy, for example,
for representing sets of k-cells, since each integer identity number would consume
less memory than an FEL_cell object. FEL supports a canonical enumeration of
k-cells, but not for every value of k and for every mesh type. The following chapters
on structured and unstructured meshes list which enumerations are currently supported.
Every enumeration follows the convention of going from O to card (k) - 1 for k-cells”
To convert between the integer representation and the FEL_cell representation, and
vice versa, FEL provides the methods:

 int int_to_cell(int i, int k, FEL cell* c,
_.int s = -1) comst; _

int qell_to%irit(const FEL_Vc_'elij.rt&Z;:{:’,ﬁ int* i) copst,

The conversion from integer to cell is influenced by the simplicial decomposition mode
currently set for the mesh. One can override the prevailing decomposition mode for the
duration of the int_to.cell call by providing an optional final argument specifying
a decomposition mode. For cell_to_int, the decomposition mode is inferred from
the incoming cell type.

11.11. PLOT3D IBLANK 51

11.11 PLOT3D IBLANK

The classes in the FEL mesh hierarchy, and the interface specified at the top hierarchy,
are intended, as much as possible, to be independent of any particular mesh or file
format standard. One case where FEL favors a particular standard is in its support of -
IBLANK. IBLANK is a standard defined by PLOT3D [WBPE92] where an integer
“IBLANK" value is associated with each vertex in a mesh. Since meshes in FEL are
currently all vertex-centered, having an integer at each vertex is equivalent to having
an integer associated with each node in a field. The IBLANK value can serve one
of three purposes. The first is as a flag indicating that the node associated with a
vertex is invalid (indicated by an IBLANK of 0). The second IBLANK use is as a
hint about overlapping zones in a multi-zone mesh. To indicate that a vertex may be
within an overlapping zone z, PLOT3D specifies that the BLANK value should be —z.
(PLOT3D follows the FORTRAN style of numbering where the zones go from 1 to n
rather than 0 to n — 1). The third usage of IBLANK values are to flag vertices that are
on an impenetrable surface, signified by the value 2. An IBLANK of | is the default,
signifying that the node is OK and that there is no overlapping zone information. FEL
meshes provide access to IBLANK values via the calls:

int iblank_at_cell{const FEL_cell& c, int i[]) const;
int iblank_at_vertex_cell(const FEL_vertex_cell& c,
int* i) const;
int combined_iblank_at_cell(const FEL_cell& c, int* c¢i) const;
int coordinates_and_iblank_at_cell{const FEL_cell& c,
FEL_vector3f_and_int[] ci) const;
int coordinates_and_iblank_at_vertex_cell (const FEL_vertex_cell& c,
FEL_vector3f_and_int* ci) const;

Foracell c, iblank.at_cell and iblank.at_vertex.cell produce IBLANK
values, one for each vertex in c. The call combined_iblank.at.cell producesa
single integer ci that is a bitwise combination of the following 4 flags:

o FEL PLOT3D_HAS_JBLANK.I]
e FEL PLOT3D_HAS_IBLANK.2
e FEL PLOT3D_HAS_IBLANK.O
e FEL PLOT3D_HAS_IBLANKIT.0

The combined IBLANK call is handy for quickly determining whether a more thorough
analysis of the IBLANK values for a cell is necessary. The flags are designed so that
a bitwise combination of them will result in an integer value between 1 and 15. FEL
meshes also provide the “coordinates and iblank™ calls, where one can request both
types of data simultaneously.

One can configure a mesh m so that a combined IBLANK value is returned by point
location routines, using the call:

m->set (FEL_RETURN_IBLANK, 1);

52 CHAPTER 11. MESHES

If locate finds a cell containing the given point, then the combined IBLANK for
the cell is returned. Note that the combined IBLANK is an integer between 1 and 15.
The locate function can still return other values, for example to indicate that the
given point is outside the mesh. See FEL_returns. h for a complete list of the return
values.

Chapter 12

Structured Meshes

In FEL, structured meshes consist of hexahedral cells (and all their faces), with a reg-
ular organization such that the vertices of the mesh can be indexed by 3 indices, just
as one would index a 3-dimensional array. The indices are usually written i, 7, and k.
Topological information, such as incidence relationships among cells, is represented
implicitly. Geometric information, such as the coordinates of vertices, can be rep-
resented implicitly or explicitly, depending on the particular subclass of structured
mesh. Subclasses of FEL.structured.mesh, in particular the curvilinear mesh
subclasses, are some of the most heavily used classes in FEL.

12.1 Simplicial decomposition

When working with structured meshes, the user has the choice of 3 simplicial decom-
position modes. Mode O corresponds to no decomposition. Modes 1 and 2 specify
decompositions where each hexahedron is broken into 5 tetrahedra. There are two 3-
tetrahedra decompositions possible for a hexahedron. In order for the decompositions
to be consistent between each pair of adjacent hexahedra, the decomposition for each
hexahedron must be the opposite of its adjacent neighbors. Thus, given the decompo-
sition choice for one hexahedron in a structured mesh, the choices for all the remaining
hexahedra are forced. FEL organizes the 2 decompositions in terms of “odd” and
“even” vertices, where the odd and even designations come from the vertex i, j, and k
indices. A vertex is even if the sum (i + j + k) is even, otherwise it is odd. In decom-
position mode 1, the diagonals added to decompose the quadrilaterals go between even
vertices. The decomposition choices for the 6 quadrilateral faces of a hexahedron leave
only one possible tetrahedral decomposition. In decomposition mode 2, the diagonals
go between odd vertices, and the hexahedral decomposition follows suit.

12.2 Cell incidence relationships

FEL.structured.mesh implements the structured mesh support for the up.cells
and down_cells member functions. Table 12.1 summarizes the combinations of

53

54 CHAPTER 12. STRUCTURED MESHES

To
o 1 2 3
O] e u
From 1|d] e
2id|d]elu
Jjdididje

Table 12.1: The supported combinations for up.cells and down_cells. Each box
in the grid represents a combination of From cell dimension and To cell dimension.
Combinations marked with d are supported by down.cells (), combinations marked
with u are supported by up_cells (). The boxes marked e are trivially supported by
either down_cells{) or up.cells (). Empty boxes indicate unsupported combi-
nations.

“from” and “to” cell dimensions supported. From the table, for example, one can see
that since there is a d in row 3, column 0, one can use the method down.cells to get
from a hexahedron (3-cell) to its vertices (0O-cells). The same support is available when
simplicial decomposition is turned on; thus, given a subtetrahedron, one can get its
vertices via down.cells. In general, the same “from” and “to” pairs are supported,
regardless of the simplicial decomposition mode.

The FEL structured mesh class also implements the adjacent cells method for struc-
tured meshes. Currently adjacent_cells is implemented for hexahedra and subte-
trahedra only.

12.3 Canonical cell enumeration

FEL_structured.mesh currently supports a canonical enumeration of vertices,
hexahedra, and subtetrahedra. The enumeration for each type of cell corresponds to
the ordering in which an iterator would produce the cells if iterating over the whole

mesh. In terms of the cell 4, 7, and k indices, the i index would vary the fastest, k the
slowest. If simplicial decomposition is turned on, then all the tetrahedra resultmg from
decomposing a particular hexahedron are numbered consecutively. '

124 Computﬁﬁ%ﬁﬁ space support -

int coordlnates at structured_pos(const FEL structured_pos& s,
ST FEL_vector3f* c) const;
int jacobian_at_vertex_cell (const FEL_vertex_cells v, -
FEL_matrix33f* m) const;

int contravariant_phys_to_comp_vector{const FEL_vertex_cell& vc,

const FEL_vector3f& pv,
. FEL_vector3f* cv) const;

int contravariant_phys_to_comp_vector{const FEL_structured_pos& s,

const FEL_vector3f& pv,

12.5. STRUCTURED MESH DIMENSIONS 55

FEL_vector3f* cv) const;

12.5 Structured mesh dimensions

FEL provides access to the dimensions of a structured mesh via the member function
get_structured.dimensions():

int get_structured_dimensions(int d[]) const;

The function is defined as part of the interface of FEL_mesh, thus one does not have to
cast an FEL_.mesh.ptr down to an FEL.structure mesh_ptr in order to make
the call. The function returns 1 on success or 0 if the call is inappropriate, e.g., if the
call is made on an unstructured mesh.

The get_structured.dimensions () call can also be useful for distinguish-
ing objects that have structured mesh behavior from those that do not. We say “has
structured mesh behavior” rather than “is a structured mesh” because not all meshes
with structured mesh behavior are subclasses of FEL_structuredmesh. In par-
ticular, a transformed mesh (Chapter 14) built in terms of a structured mesh has
structured behavior, e.g., one can request the structured dimensions, yet it is not a
structured mesh. Thus the call get_structured_dimensions () is preferable to
is_structured.mesh (), since the fact a mesh is transformed should be transpar-
ent to a routine that requires an object with structured mesh behavior.

12.6 Axis-aligned structured meshes

Axis-aligned structured meshes are meshes where the cells are aligned with the coor-
dinate axes in physical space. Axis-aligned meshes in FEL may have either regular
or irregular axes. A regular axis is an axis where the spacing between neighboring
vertices is constant. An irregular axis is an axis where the spacing is not obliged to be
the same throughout. An axis-aligned structured mesh where all the axes are regular
is also known as a regular mesh. Axis-aligned meshes can be thought of as meshes
defined by the Cartesian product of regular or irregular axes aligned with the physical
space axes.

Axis-aligned meshes have the advantage of requiring far less memory than curvi-
linear meshes (described later in this chapter), since coordinates can be represented im-
plicitly. (PLOT3D IBLANK values are assumed to be 1 for every vertex.) Axis-aligned
meshes also have the advantage of more efficient point location, since the regularity of
the geometry admits significant optimizations over the more general curvilinear mesh
case. : o

FEL provides classes representing axis-aligned meshes with all regular axes,
meshes with regular £ and y axes but an irregular z axis, and meshes where the z
axis has dimension 1. The class constructors look like:

FEL_regular_mesh{int d0, int dl, int d2,
char* nm = "regular_mesh");

56

CHAPTER 12. STRUCTURED MESHES

FEL_regular_mesh(int 40, int d1, int d2,
filoat s0, float sl, float s2,
char* nm = "regular_mesh"};
FEL_regular_mesh(int 40, int dl, int d2,
float s0, float sl, float s2,
float o0, float ol, float o2,
char* nm = "regular_mesh");

FEL_regular_xy_irregular_z_mesh{int d0, int dl1, int d2,
float o0, float sO,
float ol, float sl,
‘float* coordinates2,
char* nm = "regular_xy_irregular_z_mesh"});

FEL_regular_mesh2(int 40, int dl,
float s0, float sl,
char* = "regular_mesh2");

The parameters d0, d1 and d2 specify the dimensions of the mesh in I, J, and K.
The nm parameter gives the user the option of providing a character string name for the
mesh. The second constructor for FEL_regular mesh gives the user the opportunity

to specify the spacing between adjacent vertices using the parameters s0, s1, and s2.

The origin for regular axes can also be specified using the arguments o0, o1, and 02
in the third constructor.

The class FEL.regular.mesh?2 is used for representing regularly gridded rect-

angles. The arguments follow the same pattern as for the hexahedral meshes.

An FEL.regular.mesh2 instance lies in the z = 0 plane. The third com-

ponent of FEL_phys._pos and FEL.structured.pos arguments is ignored by
FEL.regular mesh2. Thus, the locate member function, given a point p € R3,
essentially projects p down to the z = 0 plane and then locates the quadrilateral to

which p projects.

The default interpolation mode with FEL_regular mesh2 is of type nearest

neighbor. Simplicial decomposition is not currently supported for this class.

12.7 Curvilinear meshes

Curvilinear meshes are the most general type of structured mesh in FEL. The class

FEL.curvilinear.mesh is actually an abstract class. The classes derived from

curvilinear mesh that the user can instantiate are:

e FEL.curvilinear mesh.xyz.-layout
e FEL.curvilinearmesh xyzi_layout

e FEL_curvilinear meshxyzi.field.layout

12.7. CURVILINEAR MESHES 57

There are also paged curvilinear mesh classes, described in Chapter 23. The “lay-
out” suffixes distinguish how the data describing the coordinates and in some
cases IBLANK are provided. The xyz-layout mesh works with an array of type
FEL_vector3f that contains the coordinates of the vertices. The z, y, and z compo-
nents of each vertex are contiguous in memory, as they are in each FEL_vector3f.
In terms of the structured mesh I, J, and K coordinates, the vertices are ordered so that
varies the fastest and K the slowest. IBLANK values are assumed to be 1 everywhere.
The xyzi-layout mesh works with an array of type FEL.vector3f.and_int.
The layout is the same as for the xyz mesh, except that each vertex has an
IBLANK value interleaved with the coordinates. The xyzi.field.layout
is constructed with a field where the node type is FEL.vector3f.and-int.
When a FEL.curvilinear mesh xyzi_field.layout is queried for coordi-
nates or IBLANK data, it in turn queries the field it was constructed with. The
xyzi_field.layout curvilinear mesh is typically used to represent unsteady
meshes; see Chapter 26.
The constructors corresponding to the classes above are:

FEL_curvilinear_mesh_xyz_layout (

int 40, int dl, int 42,

FEL_vector3f* xyz,

const char* nm = "curvilinear_mesh_xyz_layout");
FEL_curvilinear_mesh_xyzi_layout(

int 40, int d1, int 42,

FEL_vector3f_and_int* xyzi,

const char* nmm = "curvilinear_mesh_xyzi_layout");
FEL_curvilinear_mesh_xyzi_field_layout({

int 40, int d1, int d2,

FEL_vector3f_and_int_field ptr xyzi_field,

const char* nm = "curvilinear_mesh_xyzi_£field_layout");

Each constructor takes the I, J, and K dimensions of the mesh as the first 3 arguments.
The next argument is specific to the particular data layout: the argument is either a
pointer to a buffer or a field pointer. Thus if the user has a buffer in an appropriate
layout, then he or she can constructa curvilinear mesh directly.

In the future there may be other memory layouts supported by FEL via more sub-
classes of FEL_curvilinear_mesh. One layout that may be of particular interest
is the case where the X, Y and Z coordinate values are in separate arrays, i.e., not in-
terleaved together. Such a layout common in FORTRAN applications and in some file
formats. - ,

The convention in FEL for mesh and field constructors is that any buffer provided
as a constructor argument becomes the reponsibility of the FEL object to deallocate.
Since FEL will use the destructor delete [] to do the deallocation, it is important
that the user allocate the memory using the C++ allocation style for arrays, i.e., new
(1. For instance, if the buffer is an array of FEL_vector3f, then the allocation
should look something like:

FEL_vector3f* xyz = new FEL_vector3f[n_vertices];

58 CHAPTER 12. STRUCTURED MESHES

If the user has a buffer allocated in some other manner, or in general if the user does not
want FEL doing the buffer deallocation, then for a mesh m one can use the statement:

m->set (FEL_SUPPRESS_DEALLOCATION, 1);

If the user specifies deallocation suppression, then he or she remains responsible for
the management of the data buffers. See Chapter 7.

12.8 Curvilinear mesh point location

Curvilinear meshes inherit the interface of the two overloaded versions of locate
declared in FEL_mesh. Both versions take an FEL_phys_pos as a first argument and
a pointer to a cell where the result will be written as the last argument. The second
version of locate takes an extra argument that is used as a start cell for walking
point location. Given a start cell, Locate for a curvilinear mesh will walk from cell
to cell until a cell containing the given point is found. If locate with a start cell
is unsuccessful, or if no start cell was provided, then curvilinear meshes uses four
techniques to determine whether the mesh contains the given point. The techniques to
locate a point p are:

(1) Testif pis in the mesh bounding box.

(2) Starting at the (computational coordinates) center of each of the 6 mesh boundary
sides, use an adaptive vertex walk to get close to p. Starting from the walk
destination closest to p, do a tetrahedral walk.

(3) Starting from any of the destinations in (2) that have not been tried, do a tetrahe-
dral walk.

(4) For each 2-cell ¢ on the boundary of the mesh, compute the centroid of ¢ and the
normal of ¢ facing into the mesh. Choose the cell ¢ from which p is visible and
whose centroid is closest to p. Do a tetrahedral walk from there.

The techniques are ordered by computational cost; the fourth technique in particular is
relatively expensive. The user can control how much effort a curvilinear mesh m puts

into point location using the call:
m->set (FEL_LOCATE_EFFORT, level);

where the mesh may use the level i technique if i < 1evel. By default the level is 4,
for multi-zone meshes the level for each zone is turned down to 3.

The curvilinear mesh locate routines return 1 to signify success. If the mesh finds
a cell containing the given point, it automatically checks the IBLANK values of the
vertices of the containing cell. If any of the IBLANK values are O, then the return
value for the locate call is 0.

12.9. CURVILINEAR SURFACE MESHES 59

12.9 Curvilinear surface meshes

Another subclass of FEL_structuredmesh is FEL.curvilinear._sur-
facemesh. The class represents surfaces in R3 composed of quadrilaterals. The
class has several constructors:

FEL_curvilinear_surface_mesh{int 40, int dl,
FEL_vector3f* xyz,
const char* = name_default)

FEL_curvilinear_surface_mesh(int d0, int dl, int d2,
FEL_vector3f* xyz,

. const char* = name_default)

FEL_curvilinear_surface_mesh(int 40, int 41,
FEL_vector3f_and_int* xyzi,
const char* = name_default)

FEL_curvilinear_surface_mesh({int d0, int dl, int d2,
FEL_vector3f_and_int* xyzi,
const char* = name_default)

The d0, d1, and d2 arguments specify the structured mesh dimensions. If three “d”
arguments are provided, then exactly one of the three must be equal to 1, otherwise
the d2_dimension is assumed to be 1. Following the “d” arguments is a pointer to
a buffer with the coordinate data alone (FEL_vector3£f*), or the coordinate data
with IBLANK values (FEL_vector3f_and_int*). The user can query the mesh
for coordinates and IBLANK values using the same “at” calls as for other types of
meshes. The arguments should contain 0 in the “flat” dimension, i.e., the dimension
given the value I in the constructor. '

Point location for surface meshes is defined to mean locating the 2-cell (i.e., quadri-
lateral or triangle) whose centroid is closest to a given point location target p. If the
distance from p to the closest cell centroid is shorter than the longest edge length of the
cell, then the point location is considered successful. Currently it is not possible for the
user to change the threshold for deciding whether a cell centroid is close enough.

FEL also supports iterating over a surface. The one difference when working with
a cell iterator and a surface is that the highest-dimension cells in the mesh are now
quadrilaterals (or triangles if simplicial decomposition is turned on), rather than hex-
ahedra. Otherwise, the iterators are initialized and used just as with other structured
meshes.

~

CHAPTER 2. STRUCTURED MESHES

contour
of Neal

the right side shows

esy

dla court

(D

1

and 1

aures |1

i
%

%;
e
'

i,
Aty

S o,

KA

é“. g

60

A CFD visualization of a delta wing in a single-zone, structured mesh.

The left side of the wing displa

“ioure 12.1:

vs edues from the mesh,

field. See also Fi

Chaderjian, visualization courtesy of Tim Sundstrom.)

ed

¢ deriy

Or 0 pressul

f

S

fin

Chapter 13

Unstructured Meshes

An unstructured mesh can be thought of as a collection of cells, without the regular
organization of a structured mesh. Currently FEL supports two types of unstructured
meshes. The first, FEL_tetrahedral mesh, contains tetrahedra, triangles, edges,
and vertices. As part of the tetrahedral mesh construction, the user can provide sets of
triangles defining particular surfaces. Constructing a “tetrahedral” mesh with sets of
triangles but no tetrahedra is also allowed. The second type of unstructured mesh in
FEL is an FEL_scattered_vertex.mesh. Scattered vertex meshes consist solely
of vertex cells.

13.1 Constructing a tetrahedral mesh

The constructor for an FEL tetrahedral mesh looks like:

FEL_tetrahedral_mesh(int n_vertices,
FEL_vector3f* coordinates,
int n_special_triangles,
FEL_vector3i* triangles,
int* triangle_ids,
int n_tetrahedra,
FEL_vector4i* tetrahedra,
const char* = "tetrahedral_mesh");

Here n.vertices specifies the number of vertices in the mesh, coordi-
nates is an array containing the physical space coordinates of each vertex,
n.special._triangles specifies the number of items in the triangles amray
and in the triangle_ids array. Each FEL_vector3i in the triangles armray
specifies the three vertex indices of a triangle. The arguments n_tetrahedra and
tetrahedra specify the number of tetrahedra, and the vertices of each tetrahedron,
respectively. The vertex numbering in the triangles and tetrahedra arrays is
expected to be FORTRAN style, i.e., the numbers should refer to vertices as if they
were numbered 1 to n_vertices rather than O to n.vertices - 1. The buffers

6!

62 CHAPTER 13. UNSTRUCTURED MESHES

To
1 2 3
Qe u
From 1 .
2]d e [u
31d Y

Table 13.1: The combinations supported by FEL_tetrahedral.mesh for
up_cells and down.cells calls. Each box in the grid represents a combina-
tion of From cell dimension and To cell dimension. Combinations marked with d
are supported by down.cells (), combinations marked with u are supported by
up.cells (). The boxes marked e are trivially supported by either down.cells ()
orup.cells (). Empty boxes indicate unsupported combinations.

coordinates, triangles, triangle.ids, and tetrahedra passed in to the
constructor become the responsibility of the tetrahedral mesh to deallocate when they
. are no longer needed.

13.2 Cell incidence relationships

Table 13.1 summarizes the currently implemented support for incidence relationship
queries with tetrahedral meshes. From the table one can see, for example, that FEL
tetrahedral meshes support queries requesting the vertices of a triangle (From 2 To 0),
or the tetrahedra that a triangle is the face of (From 2 To 3). Queries for From/To
combinations which are not currently supported return 0.

The adjacent.cells call is supported for tetrahedral arguments only.

13.3 Canonical cell enumeration

FEL_tetrahedral mesh currently supports a canonical enumeration of vertices,
triangles, and tetrahedra. No enumeration is currently supported for edges. The enu-
meration for each type of cell corresponds to the ordering in which an iterator would
produce the cells when iterating over the whole mesh.

13.4 Surfaces

In structured hexahedral meshes, one can easily define a surface by holding one of
the i, j, or k indices constant. Such surfaces are often used to represent entities such
as the fuselage of an aircraft. Specifying a surface in a tetrahedral mesh is not as
easy. To compensate for this, sets of triangles can be designated as representing a
surface by the mesh generator, and a listing of the special triangles can then be included
as part of the data set. For instance, the unstructured mesh file format defined by
PLOT3D [WBPE92] supports the specification of triangle sets, each set with an integer

13.5. POINT LOCATION 63

identity number. Note that the FEL_tetrahedral _mesh constructor starts with an
array of triangles and an array of identity numbers, one for each triangle. As part of the
construction, FEL_tetrahedral_mesh must determine the unique set of identity
numbers and then rearrange the triangles into their corresponding sets. The user can
query about the number of predefined triangle sets and get their identity numbers via
the tetrahedral mesh calls:

int get_n_triangle_sets{) const;
void get_triangle_set_ids(int ids[]) const;

Using one of the predefined set identity numbers, one can initialize an iterator and
loop over the triangles or vertices of a given surface. See the chapter on iterators
(Chapter 16) for more details.

13.5 Point location

As with structured meshes, point location for a point p in tetrahedral mesh works by
“walking” from 3-cell to 3-cell, until a cell containing p is found. The tetrahedral
mesh locate is overloaded, just as in the structured mesh case, so that the user can
provide a start cell for the walking search. If the walking search with a given start cell
is unsuccessful, or if no start cell is given, then a global search over the whole mesh is
done.

13.6 Constructing a scattered vertex mesh

The constructor for a scattered vertex mesh looks like:

FEL_scattered_vertex_mesh{int n_vertices,
FEL_vector3f* coordinates,
const char* =

"scattered_vertex_mesh")

The array coordinates contains n_vertices of coordinates, i.e., coordinates for
each vertex. The optional final argument gives the user the opportunity to give a specific
name to the mesh. :

As with any mesh subclass, the scattered vertex mesh supports the standard mem-
ber functions inherited from FEL_mesh. Cell incidence relationships are trivial, since
there are only O-cells. The canonical enumeration of the vertices is the same ordering
as provided to the mesh constructor. Point location is defined as locating the ver-
tex closest to the given search point. Interpolation is simply nearest neighbor. The
FEL.cell_iter and FEL_vertex.cell.iter both have the same behavior, i.e.,
both iterate over vertex cells.

64) CHAPTER 3. UNSTRUCTURED MESHES

Figure 13.1: A CFD visualization of a fighter using an unstructured, tetrahedral mesh.
The left side of the aircraft displays edges from the mesh. the right side shows contour
lines for a pressure derived field. See also Figures 1.1 and 121 (Data courtesy of
NASA Langley Research Center, visualization courtesy of Tim Sandstrom?)

Chapter 14

Transformed Meshes

For domains where there is some type of symmetry, computational scientists often
take advantage of the symmetry to model a smaller, fundamental domain. The results
from modeling such a domain can then be replicated and transformed to fill the original
domain. For example, in some turbomachinery studies, only one sector of a radially pe-
riodic domain may be simulated. When visualizing the results from such simulations,
the scientist may only need to visualize the results within the fundamental domain, or
the scientist may wish to see the results replicated to look like the actual turbomachine.
See, for example, Figure 14.1. In some cases, it may be sufficient to generate the
graphics primitives for the fundamental domain and then draw the primitives repeat-
edly, applying a different transformation each time. In other cases, replicating graphics
primitivés may rot be enough. For instance, when using particle tracing visualization
techniques, a scientist may be interested in seeing the traces continue beyond the fun-
damental domain. In general, there are occasions when one would like to treat the
simulation results as if they filled the whole original domain, without regard to any
symmetry optimizations that may have been employed.

FEL supports the representation of meshes with periodic symmetries through the
subclasses of FEL_transformed.mesh. Transformed meshes are constructed with
an original mesh and the data describing a particular transformation. Transformed
meshes do not replicate the mesh data; thus one still enjoys most of the memory sav-
ings due to not constructing a mesh for the whole original domain. At the same time,
transformed meshes have the same interface as ordinary meshes and can be used just
as non-transformed meshes, with no special treatment. The transformed mesh classes
emulate rigid body transformations: translation and rotation. A transformed mesh can
be constructed given any FEL mesh instance, including single-zone meshes, multi-
zone meshes, and even other transformed meshes. See the mesh class hierarchy figure
(Figure 11.1) for a refresher on the FEL mesh family.

65

66 CHAPTER 14. TRANSFORMED MESHES

Figure 14.1: A close-up of a periodic domain modeling a turbine [GBD96]. The fun-
‘damental domain used for the simulation would extend upward from the white regions
at the base of the blades. Data courtesy of Karen Gundy-Burlet, visualization by Tim
Sandstrom.

14.1. HOW TRANSFORMED MESHES WORK 67

14.1 How transformed meshes work

A subclass of FEL_transformed.mesh is constructed with the mesh to be trans-
formed and the data required for a particular transformation 7. For mesh member
functions that do not depend on the mesh geometry, such as card and up.cells, the
transformed mesh simply delegates the call to the original mesh. For member functions
involving the mesh geometry, such as calls producing coordinates or the bounding box,
a transformed mesh makes the corresponding call on the original mesh and then applies
T to the result. For point location, a mesh representing a transformation T appilies the
inverse transformation 7! to the given point and then calls the locate routine on the
original mesh, using the inverse transformed point as an argument.

14.2 The transformed mesh subclasses

The transformed mesh subclasses are illustrated under FEL_transformed.mesh in
the mesh hierarchy (Figure 11.1). The constructors for transformed mesh classes are:

FEL_translated_mesh(FEL_mesh_ptr m, const FEL_vector3f& t,

char* nm = "translated_mesh");
FEL_rotated_mesh(FEL_mesh_ptr, const FEL_matrix33f& r,

char* nm = "rotated_mesh");

FEL_x_rotated_mesh(FEL_mesh_ptr m, float a,

char* nm = "x_rotated_mesh");
FEL_y_rotated_mesh (FEL_mesh_ptr m, float a,

char* nm = "y _rotated_mesh");
FEL_z_rotated_mesh(FEL_mesh_ptr m, float a,

char* nm = "z_rotated_mesh"); -

Each constructor takes a mesh m, and an optional name nm. FEL_translated.mesh
emulates a translation by a vector t. The FEL_rotated.mesh classes emulate
rotation transformations. The rotations are represented by a 3 x 3 matrix r such
that given an original point p and a matrix R, the transformed point p = R * p.
FEL also provides the classes FEL x.rotatedmesh, FEL.y.rotat ed_mesh, and
FEL.z_rotated._mesh for representing rotations about the z, y, and z axes, respec-
tively. The angle a should be in degrees. These classes make it easier to construct a
mesh rotated about a particular axis, since one does not have to remember the matrix
terms. The rotation subclasses also make it possible to do some optimizations, since
the transformations can be computed in fewer floating-point operations than required
for the general rotation case.

68

CHAPTER 14. TRANSFORMED MESHES

Chapter 15

Multi-Zone Meshes

Multi-zone meshes are represented in FEL by the class FEL.multimesh. A
multi-zone mesh consists of 1 or more zones, where each zone is a subclass of
FEL.single_mesh or perhaps a transformed version of some single mesh object
(see Chapter 14). Note that the zones do not have to be all of the same type, for exam-
ple, one could construct a multi-zone mesh containing both structured and unstructured
zones. A multi-zone mesh with a zone that itself is a multi-zone mesh is not allowed,
because objects such as cells that need to specify a zone contain a single integer for
that purpose, and the integer is used to index into a single level of hierarchy.

For most mesh member functions, a multi-zone mesh simply delegates the func-
tion call to a particular zone. In particular, member functions that take an in-
coming argument containing a zone number can be immediately delegated. The
FEL classes FEL.cell and FEL.structured.pos both contain zone integers,
but FEL_phys_pos does not. By default, the zone in an FEL.cell or an
FEL_structured._pos is set to FEL_ZONE_.UNDEFINED. It is an error to call a
multi-zone mesh member function with an incoming argurmient containing an unde-
fined zone.

15.1 Point location, IBLANK, and PLOT3D

Point location is the most difficult task that a multi-zone mesh must support. Given a
point p to locate, a multi-zone mesh must find a zone and a cell containing p. In gen-
eral, the task is complicated by the fact that zones can overlap; thus p may be located in
not just a single zone, but possibly multiple zones. When there is more than one zone
containing p, then a “best” zone must be chosen. Thus, to be completely thorough,
a multi-zone mesh would attempt to locate p in every zone and then choose the best
result. The test-every-zone approach is effective, but too expensive for most applica-
tions. FEL uses two strategies to improve upon the typical multi-zone point location
performance, so that in most cases the test-every-zone approach is not necessary.

The first strategy for accelerating point location is the same as that used with other
FEL mesh types: provide a start cell for the walking point location. Since FEL cells

69

70 CHAPTER 15. MULTI-ZONE MESHES

contain a zone number, an initial cell argument effectively provides both a zone z to
search first and a cell in z to start from. If the start cell is close to the location of the new
point p, then it is possible that a cell containing p can be found quickly. Unfortunately,
with a multi-zone mesh there is still the problem that the point p could be in more than
one zone; thus even if the given start cell leads quickly to a cell ¢ containing p, there is
no assurance that ¢ is the only cell containing p, or that ¢ is the best cell containing p.

The second strategy for accelerating point location addresses the overlapping zones
issue, and in general the issue of which zone to try next if point location in a particular
zone fails. The strategy relies on PLOT3D [WBPE92] IBLANK values. Recall that in
PLOT3D, an integer IBLANK of —z can be used to suggest another zone z to search. If
point location in a paricular zone fails, then a negative IBLANK still makes it possible
to avoid resorting to the test-every-zone strategy. Furthermore, if point location in a
particular zone is successful, then the lack of negative IBLANK values can be taken to
mean that there are no othcr zones overlapping a given point, thus no more searching
is needed.

IBLANK is also used by PLOT3D to flag nodes where the field data values are not
valid (IBLANK of 0). As with curvilinear meshes, FEL returns an unsuccessful point
location return code rather than a cell with a 0 IBLANK. In cases where there is more
than one 0- IBLANK free cell containing a given point, FEL must choose the best one.
FEL chooses the cell with the smallest volume since smaller cells typlcally come from
higher-resolution meshes. C TR

FEL is designed to be explicit about features that are specific to a pamcular file
format or CFD standard, as much so as is practical. For multi-zone mesh point lo-
cation, FEL depends upon IBLANKSs, thus the point location code is PLOT3D spe-
cific. The PLOT3D dependency is made explicit in the FEL mesh class hierarchy:
FEL_multi.mesh inherits from FEL.mesh, and FEL_plot3d.multi_mesh in-
herits from FELmulti_mesh (see Figure 11.1). FELmulti_mesh contains the
vast majority of the interface and implementation for multi-zone meshes, the plot3d
class implements point location. In the future, other multi-zone mesh classes can be de-
rived from FEL_mul t i_mesh, each with ijts own system for representing information

analogous to IBLANK.

15.2 Constructing a multi-zone mesh

The class FEL_multi_mesh is an abstract class; to make a concrete multi-zone mesh
object, one must currently use the PLOT3D class. The constructor looks like:

FEL_plot3d_multi_mesh(int n_meshes, FEL_mesh_ptr* meshes,

char* nm = "FEL_plot3d_multi_mesh");

The parameter n.meshes specifies the number of meshes, meshes is an array of
pointers to meshes. It is the responsibility of the multi-mesh class to deallocate the
mesh pointer array when the multi-mesh is destructed.

All FEL meshes return IBLANK values of 1 by default if no IBLANK data are
provided. Thus one can construct an FEL_plot3dmult i mesh instance even if the
individual zones do not contain explicit IBLANK information. Point location efforts

15.2. CONSTRUCTING A MULTI-ZONE MESH 71

will tend to be slower, since there will be no zone jumping hints, and situations where
a point is contained in more than one zone will not be detected.

72

CHAPTER 15. MULTI-ZONE MESHES

Chapter 16

Iterators

Iterators provide an interface for looping over the cells in a mesh. The iterator in-
terface is independent of the particular mesh type, for example whether the mesh
is structured or unstructured. FEL iterators work with the generalized cell object
FEL_cell; thus iterators can represent not just hexahedra or tetrahedra, but also
lower-dimensional cells such as vertices, triangles, and quadrilaterals. The class
FEL_cell._iter provides the general cell iterator functionality. FEL also provides
the class FEL_.vertex_cell_iter, which is used in a manner very similar to
FEL.cell_iter, except that the iterator only represents vertices (“vertex cells™).

16.1 Basic iterator usage

The basic use of iterators involves four operations: initialization, a done test, advancing
to the next element, and dereferencing. The following code fragment illustrates all four
operations:

FEL_mesh_ptr mesh;
FEL_vertex_cell_iter iter;
FEL_vector3f c;

int res;

for (mesh->begin(&iter); !iter.done(); ++iter) (
res = mesh->coordinates_at_vertex_cell(*iter, &cC);
cout << *iter << " coordinates: " << c << endl;

}

The initialization is handled by the begin method supported by all FEL mesh
classes. The test whether the iterator is done is accomplished via the done () method
of iterators. Advancing the iterator is accomplished via the ++iter call, and the itera-
tor is dereferenced using the * i ter syntax. Note how the dereferenced iterator can be
used just as one would use an FEL _vertex_cell argument, e.g., as an argument to COOX -
dinates.at_vertex.cell (). One can also call methods on *iter that belong

73

74 CHAPTER 16. ITERATORS

to the FEL_cel1l class, but one must be a bit careful about syntax. In C++ (and C),
the “.” operator has higher precedence than “*”. Thus, for example, the expression
“*jiter.get_ijk()” would parse the same as “* (iter.get_ijk())", which
would not compile since the class FEL_cell_iter has no method get_ijk().
To access the methods belonging to the cell that an iterator represents, such as
get_ijk{), one should write “(*iter) .get_ijk()". (The operator required to
support -> syntax is not currently defined in the library; therefore one cannot write
“iter->get_ijk()".)

In a second example, we highlight two variations in the style of iterator usage:

FEL_field_ptr field;

FEL_vertex_cell_iter iter, end;
field->begin(&iter);

field->end(send); = - 7 L e e

for (; iter != end; ++iter) { :

The ﬁgsg "ygpﬁaﬁt_mn shows how one tests whether an }tg(ator is done: rather than callmg
the done () method, one can create a separate iterator object, initialized by the end ()
method of meshes, and then compare the original iterator with the end object using
the ! = operator. The prefered FEL style is the former, i.e., use the done () member
function rather than making a separate end object. The latter style is provided for use
in the future with the Standard Template Library (STL) [MS96]. The example also
highlights the fact that the iterator initialization routines (begin () and end()) are
accessible via the field interface, so one does not have to get the mesh associated with

a field in order to initialize iterators.

The usage of FEL.cell.iter iterators is nearly identical to the vertex cell
iterator above. Where FEL_vertex.cell_iter appears above, one would in-
stead write FEL_cell_iter. Calls taking FEL_vertex.cell arguments would
have to be replaced with the appropriate calls taking an FEL.cell argument.
FEL_vertex.cell_iter objects always iterate over vertices. FEL.cell.iter
iterators, on the other hand, by default, loop over the highest-dimension cell

type in the mesh. The cell type produced by FEL.cell_iter iterators is also
a function of the simplicial decomposition mode for the mesh. So, for exam-
ple, given a structured mesh containing hexahedra, an FEL.cell.iter produces
hexahedra, or tetrahedra if simplicial decomposition is turned on. For a struc-
tured surface mesh (FEL_curvilinear.surfacemesh), FEL.cell_iter pro-
duces quadrilaterals, or triangles if simplicial decomposition is on. Iterators over
FEL.tetrahedral_mesh instances produce tetrahedra, regardless of the simplicial

decomposition state. Finally, cell iterators over FEL.multi.mesh instances produce

the highest-dimension cell for each zone in the mesh.

16.2. ITERATORS AND ORDERING 75

16.2 Iterators and ordering

FEL iterators allow the user to specify subsets of cells over which to iterate, but the
order in which the user sees the cells is fixed. For structured meshes, iterators advance
the I index the fastest, followed by J, then K. See Chapter 12 for a description of how the
data members of an FEL_cel1 are set in order to specify a particular structured mesh
cell. With unstructured meshes, only the I index is used. For the FEL_vertex.cell

iterator on an unstructured_mesh m, the I index goes from 0 to m->card(0) - 1.
For the FEL_cell iterator on an unstructured_mesh m, the I index goes from O to
m->card(3) - 1.

In the case of multi-zone meshes, FEL iterators process the zones in ascending
order, using the default order of the mesh for each zone to control how the cells are
produced.

16.3 Iterating over mesh subsets

In some cases, one may desire to iterate over a subset of the cells of a mesh rather than
every one. In order to describe a subset of a mesh, one typically must know about the
mesh type, e.g., whether the mesh is structured or unstructured. Unfortunately, this
implies that one must give up some of the the mesh type independence afforded by the
default behavior of FEL iterators. Nevertheless, mesh subset iteration is important in
certain cases. FEL supports mesh subset iteration via optional pairs of keyword-value
arguments provided to the begin () initialization statement.

Table 16.1 lists the keywords supported in iterator initialization. Also included in
each of the S, U, and MM categories would be subclasses of the corresponding mesh
class, for instance, FEL.curvilinear.mesh and FEL_regular._mesh would be
included under the S category. The FEL_I MAX parameter defaults to dim[0] - 1
for a vertex iterator with a structured mesh. For unstructured meshes, FEL_I MAX
defaults to card (0) - 1. FEL_J_MAX and FEL_K_MAX are both set to 0.

The following excerpt illustrates an example where the iterator produces the ver-
tices on the K = 0 surface of a structured mesh, with a stride of 2 in the I and J dimen-
sions: : :

FEL_field_ptr field;
FEL_vert_pos_iter iter;
int res;
res = field->begin(&iter, FEL_K, O,
FEL_I_STRIDE, 2, FEL_J_STRIDE, 2, 0);

if (res !'= 1)
for (; !iter.done(); ++iter) {
}

Note that the begin () statement above now has a return value, so that the library
has the opportunity to indicate that one has provided initialization arguments that are

76 CHAPTER 16. ITERATORS

Keyword Default Mesh Types
FEL_.IMIN 0 S, U, MM*
FEL_I.MAX dim[0] - 1| S, U MM*
FEL.I_.STRIDE 1 S, U, MM
FEL_.JMIN 0 S, MM*
FEL_JMAX dim{1l] - 1 | S,MM*
FEL.J.STRIDE 1 S, MM
FEL_KMIN 0) S, MM*
FEL_.KMAX dim{2] - 1| S§,MM*
FEL_K_STRIDE 1 S, MM
FEL.I (none) S, MM*
FEL.J (none) S, MM*
FEL.K) (none) S, MM*
FEL_UNSTRUCTURED._SURFACE | (none) U, MM*
FEL.ZONE 0 MM

Table 16.1: The FEL iterator initialization keywords. The characters S,
U, and MM in the column Mesh Types stand for FEL.structured.mesh,
FEL_unstructured.mesh, and FEL multi mesh classes, respectively. The as-
terisk following MM indicates that the corresponding keyword is legal only if the ini-
tialization is for a specific multi-mesh zone.

not valid. For instance, the structured mesh initialization routine detects when the value
for a parameter such as FEL_J_MAX is out of range, and returns a value not equal to 1
to indicate this error. Note also that the final argument to the begin () statement must
always be 0 in order to indicate that are no more keyword/value pairs to follow.

In the case where one is initializing an iterator for a multi-zone mesh, some initial-
ization keywords are allowed only if one also specifies that the iteration should be over
a particular zone, using the FEL_ZONE keyword. In Table 16.1, the rows where MM
is followed by an asterisk designate keywords which are allowed only in conjunction
with multi-zone meshes if one is selecting a specific zone. This restriction is due to the
fact that most parameters, such as FEL_I_MAX or FEL_UNSTRUCTURED.SURFACE,
typically only make sense when applied to a particular zone.

The initialization of FEL_cel1_iter instances is done using the same set of key-
words as for FEL_vertex.cell iterators. The default values for the parameters
are the same as for vertex iterators, except that the FEL_* MAX values for structured
meshes are initialized to dim[0) - 2,dim[1] - 2,anddim[2] - 2forthel,
J, and K indices, respectively.

For unstructured meshes, the FEL_I_MIN and FEL_I_MAX parameters allow the
user to control the first and last cell in the sequence of cells produced. One can also
specify a stride via FEL_I_STRIDE. Parameters controling J and K are ignored by
unstructured meshes.

16.4. ITERATING OVER SURFACES 77

16.4 Iterating over surfaces

FEL iterators can also return vertices or cells from a surface. One can
have a surface either because the underlying mesh is a surface mesh (e.g.,
FEL.curvilinear_surface mesh) or because the iterator initialization key-
words imply a surface. For structured meshes, one can specify a surface by holding ei-
ther the 1, J, or K index at a constant value. The iterator initialization keywords FEL_I,
FEL_J, and FEL K are used for this purpose. For example, in the code fragment above,
the iterator initialization specifies the constant K = 0 surface. With structured meshes,
iterating over a surface will produce quadrilaterals, or triangles if a simplicial decom-
position mode is on. When iterating over a structured surface within a hexahedral
mesh, the decomposition of the quadrilaterals into triangles matches the tetrahedral
decomposition of the hexahedra in the original mesh.

With unstructured meshes, sometimes the input file specifies sets of triangles
which are taken to be part of a surface. Each set of surface triangles has an as-
sociated indentification number. ~ The user can access these triangle sets via the
FEL_UNSTRUCTURED.SURFACE keyword, followed by a triangle set ID number.

16.5 Iterators and time

When working with time-varying data, one typically needs to initialize the time compo-
nent of the cell represented by an FEL_cell_iteroran FEL.vertex.cell.iter.
Both types of iterators support the methods set _time (), set_physical_time(),
set_computational_time{), and set_time_step (). Using the set methods,
one can initialize time for an iterator just as one would for an FEL cell. By default, the
time associated with a cell is undefined. Note that FEL iterators do not currently iterate
over time, i.e., advancing an iterator (using ++) does not change the time set by set
calls described immediately above. On the other hand, the user is free to use the set
calls within the iteration to manually change the time value.

78

CHAPTER 16. ITERATORS

Chapter 17

Fields

17.1 Fields in general

The field class hierarchy is the centerpiece of FEL. Conceptually, a field is a contin-
uous region of space over which some physical quantity is continuously defined. At
any given spatial location in the field, the associated physical quantity may vary with
time, or it may be time invariant. In finite-difference computational simulations, field
values are calculated only at discrete points, but the spatial and temporal sampling
are chosen to yield a reasonable approximation to a continuous physical system. The
FEL field class hierarchy attempts to provide a set of objects and methods (data types
and functions) which allow the user to treat finite-difference simulation data abstractly
as continuous fields, with minimal regard for the actual underlying discrete spatial and
temporal representation. Moreover, the FEL field class hierarchy provides mechanisms
for combining different fields, and for converting one field type to another, according to
various mathematical or physical identities, so that as field values are retrieved they are
operated on by various functions, and can thus be returned directly in a form suitable
for a particular task.

17.2 Fields in context

The FEL field class hierarchy is rooted in FEL_reference_counted_ocbject via
FEL.mutex _reference.counted.object, so that fields can be managed using
reference counting, and in a thread-safe manner. Reference counting can reduce unnec-
essary memory usage, a particularly desirable feature in the case of fields, which can
be quite large. FEL_reference.counted.object also harbors a character string,
which can be used to name any of its descendants, including fields.

Because fields are reference counted objects, they should be created only on the
heap (via the new operator), using FEL's smart pointers as handles. More on instanti-
ating fields later.

79

80 CHAPTER 17. FIELDS

17.2.1 Typeless fields

Derived directly from the reference counting classes is FEL.field, the top of the field
lineage proper. Unlike all of the other field classes, which inherit from it, FEL.field
is not templated, and it contains not just a common interface, but common code shared
by all fields, regardless of the type of field data. This node-type-independent code
mostly provides an interface to the field’s mesh, and to two types of iterators which
traverse the mesh. There are also some functions for translating between physical and
computational time, and for retrieving various global physical quantities associated
with the field. Factoring out such code common to all fields, from the more parochial
code of particular field types, not only embodies a clean conceptual separation, but it
also may reduce redundant code generation by compilers that take an "all or nothing”
approach to template instantiation.

From a client’s point of view, FEL_fields are important because they are the
common ancestor of all fields — hence a pointer to FEL_field (typedef’d as
FEL_field_ptr) can refer to a field of any type. The FEL_field pointer thus
provides the means by which one can store handles to potentially diverse field types in
a single homogeneous container (such as an array), or construct functions to operate on
arbitrary fields. This feature is invaluable in writing general purpose code. Of course,
FEL_f ields have such a generic interface that not much useful can be done with them
without knowing some basic facts about their actual instantiations: methods to obtain
these facts are provided by the FEL_field is_*.field() interface.

17.2.2 Typed fields

Derived from the generic FEL_field is the templatized FEL_typed.field<T>.
FEL.typed_field<T> is parameterized by <T>, which is a placeholder for the type
of data provided at each node. This parameterization allows a single body of code to
support instantiation of fields of any type, so long as the type supports a few basic
arithmetic operations (see Chapter 21). FEL_typed_field<T> specifies the type-
dependent interface common to all fields — primarily the at_* () calls, which pro-
vide lazy evaluation of field values at given locations in space and time. For many
applications, the at_* () calls are the heart of the FEL user interface. In addition,
FEL.typed_field provides a convenience function for producing an “eagerly eval-
uated” field: this function precalculates field values at each node, and stores them into
memory. By eliminating potentially redundant calculations, eager evaluation may be a
logical choice if one plans on making heavy use of a highly derived field.

There are at present eleven immediate descendants of FEL.typed_field (see
Figure 17.1). The most heavily used types will be described in more detail in following
chapters, but for now here is a brief overview.

FEL_core.field<T>

A field whose node values reside in memory. Core fields are typically produced by
reading a PLOT3D solution file from disk, by executing get_eager_-field(), or

17.2. FIELDS IN CONTEXT 8!

[FEL time_ varying_field<T> | —[FEL_lime_serles_field<1> |—{FEL_fixed_interval_time serles_fieid<T>]

FEL_hash_cached_field<T>|

—FEL fieild D}—FEL_typed_field<T> DE-—{FEL_constant_field<T>}

FEL_derived_field<TO> D|

FEL_multi_field<T>

{FEL_differential_operaior_field<TO.FROM> B|

FEL_paged_field<T>

{FEL _touch_counted_field<T>|

Figure 17.1: A portion of the FEL typed field hierarchy. The subclasses of
FEL_derived_field<T> and FEL.differential_operator.field<TO,
FROM> do not appear in this diagram. See Figure 20.1 for the differential operator
subclasses.

by explicitly associating a mesh with a node buffer in a core field constructor. See
Chapter 18. '

FEL_paged_field<T>

This is a field whose node values are paged in from disk on demand — useful or even
imperative for extremely large data sets. See Chapter 23.

FEL_derived.field<TO>

Under the lazy evaluation paradigm, derived fields are essentially filters which trans-
form field data as part of their retrieval. Derived fields are always built on top of other
fields, and while the derivation chains can be arbitrarily long, there must always be
at least one field at the bottom which can retrieve or manufacture a field value “au-
tonomously” to get the whole thing started. Derived fields are templatized by the type
of data they produce. See Chapter 19.

FEL.differential_operator_fieldl<TOQO, FROM>
FEL.differential.operator_field2<TQO, FROM>

These are specialized derived fields which apply the nabla operator to scalar or vector
fields, producing other scalar or vector fields, using either first- or second-order approx-

82 CHAPTER 17. FIELDS

imations for the required derivatives. The differential operator fields are templatized
by their input and output types. See Chapter 20.

FEL constant_field<T>

Constant fields return the same (constant) value from all locations. This can be useful
for certain applications which want to combine fields algebraically — for example, one
might shift the frame of reference of a velocity field by adding a constant velocity vec-
tor at all points. Note that the same effect can be achieved with derived field mapping
functions.

FEL_mesh.as_field<T>

This field type in effect creates a vector field whose entry at each node is just the po-
sition vector of the node, as given by the mesh. Thus this field type constitutes an
adaptor, allowing one to access a mesh using the field interface. Using this strategy,
for instance, one can implement physical-space cutting surfaces on a mesh by extract-
ing isosurfaces from the associated FEL_mesh_as_field. The mesh-as-field also al-
lows one to convert computational coordinates to physical coordinates simply by using
FEL mesh.as.field: :at_structured.pos (), but FEL provides a specialized
and more efficient way of doing this: coordinates.at_structured.pos(]),
callable on any mesh.

FEL_timevarying.field<T>

This field type and its subclasses provide the additional interface necessary to support
time-varying data. See Chapter 25.

FELmulti_ field<T>

This field type is basically a container class capable of managing multiple fields. It will
be used primarily for supporting transformed fields.

FEL_touch.counted.field<T>

This field type simply sits on top of another field and records usage statistics from that
field. Such statistics can be very informative during application development or tuning,
as they may guide decisions about deployment of lazy evaluation, eager evaluation, or
paged fields.

FEL_cached.field<T>

This field is built on top of another field, and caches node query results from that field.
Field queries on revisited nodes can be fetched from the cache, potentially saving time
by eliminating redundant calculations on a highly derived field.

17.3. FIELDS IN DETAIL 83

FEL_hash cached.field<T>

Similar to FEL.cached_field, but the cached data is stored in a dynamically cre-
ated hash table, instead of in preallocated memory as in FEL_cached_-field. The
hashing scheme may save a lot of unnecessary storage space in sparsely accessed fields,
at the cost of slightly higher cache retrieval times compared to FEL.cached field
(but still potentially faster than pure lazy evaluation, on a highly derived field).

17.3 Fields in detail
17.3.1 Every field has a mesh

A key data member of every field is its mesh, which is represented in the field by
a FEL.mesh ptr. Every instantiated field must contain precisely one valid mesh
pointer. It is not possible to create a field without supplying a mesh of the same cardi-
nality as the data buffer, since each node value must have an associated spatial location
before it is possible to carry out such basic operations as point location or interpolation.

In contrast, a given mesh can be included by any number of fields, including none
at all. A mesh by itself can support many purely geometric operations, whether or not
any further data are attached to its vertices; and a single mesh can provide the spatial
organization for many types of data, whether or not those data reside in memory or are
constructed on the fly. A core field and any derived fields it supports will always share
the same mesh.

Thus in FEL there is a considerable asymmetry between meshes and (non-
positional) node data. The FEL paradigm depends on a one-to-many but nevertheless
tight binding between a mesh and its node data. The main business of creating a core
field is establishing this binding; any derived field merely inherits its input fields’ mesh.

The FEL.mesh.ptr inside a field is protected, which means you can’t access it
directly. The access function get_mesh (), which you can call on any field, returns a
pointer to the field’s mesh. You can use this pointer to construct other fields, or to call
any of the publicly available mesh functions. For example:

void foo(FEL_field_ptr field)
{
FEL_mesh_ptr mesh = field->get_mesh();
FEL_vector3f lo, hi; '
mesh->get_bounding_box (&lo, &hi}:
FEL_vector3f_field_ptr coord_field =
new FEL_mesh_as_vector3f_£field(mesh);
FEL_cell_iter ci;
FEL_vector3f pvec[FEL_CELL_MAX_NODES] :
for (mesh->begin(&ci); 'ci.done(); ++ci)
{
coord_field->at_cell(*ci,pvec);
isosurface(pvec, ...): '

84 CHAPTER 17. FIELDS

}

Several of the commonly called methods on FEL_mesh have also been put in the
FEL_field interface, so you can call them directly on a field without first retrieving
the field’s mesh pointer. In these cases, the field merely forwards your function call to
its mesh. Functions in this category include:

int card(int);
int get_n_zones{);
void set (FEL_set_keyword_enum, int) ;
int coordinates_at_cell (const FEL_cells, FEL_vector3f []);
int coordlnates _at_vertex_cell (const FEL_vertex_cellg,
FEL_vector3f*);
int convert_time(const FEL_time&,
FEL_time_representation_enum,
" FEIL_time*) const;

and the iterator functions:

void begln(FEL vertex_cell_iter*);

int begin(FEL_vertex_cell_iter*, int, ...}); -- -
void end(FEL_vertex_cell 1ter*),

void begin(FEL_cell_iter*}; ’

int begin(FEL_cell_iter*, int, ...};

voild end(FEL_cell_iter*);

See Chapter 11 for details of these functions.

17.3.2 Theat_* () calls

The at_* () calls allow one to retrieve field values at arbitrary locations and times
within the computational domain. Locations and times can be specified in either com-
putational or physical coordinates, with the previously noted exception that fields based
on unstructured meshes don’t (can’t!) support computational spatial dimensions. Since
the at.* () calls are declared to return field values of a specific type, they are intro-
duced to the field interface in the templatxzed FEL typed field<T>, the common
ancestor of all mstantlable ﬁelds - < -

In addition to being parameterized by the type of ﬁeld va]ue bemg re(rleved as
just mentioned, the at.* () calls are named according to the type of the field location
being queried. This scheme was adopted, rather than overloading on location type, for
reasons involving C++ function hiding. FEL’s design dictates that various specialized
field types redefine certain functions that are initially defined as high as possible in
the class hierarchy. The at_* () calls are virtual, so that this redefinition gives rise to
polymorphism. However, in C++ it is impossible to selectively override only a subset
of a group of overloaded functions: if even a single member of the group is overridden,
the rest are effectively hidden. This function hiding can only be overcome by redefining
the entire group of overloaded functions, and for those that are unchanged, providing

17.3. FIELDS IN DETAIL 85

explicit redirection up the class hierarchy. This solution is inefficient — it may take
multiple (redirected) virtual function calls to reach the actual method — and it also
results in needlessly cluttered class declarations and definitions.

FEL largely sidesteps these issues by renaming each of the at.* () calls according
to the type of location being queried. This permits the different varietiesof at_* () to
be independently overridden, at the cost of a slightly more cumbersome function name.
Renaming functions according to their argument types is known as “name mangling”,
and is the strategy employed by C++ compilers to distinguish between overloaded func-
tions. FEL is “partially mangling” the at_* () interface, but hasn’t abandoned over-
loading altogether: the at_phys_pos () calls are overloaded with respect to other
argument types.

“The partial mangling and overloading in the at_* {) interface results in 8 distinct

calls:

int at_vertex_cell (const FEL_vertex_cell&, T*);

int at_cell(const FEL_cell&, T[]);

int at_cell_interpolant(const,FEL_cell_interpolant&, T[]1);

int at_structured_pos({const EEL_structured_pos&, T*);

int at_phys_pos{const FEL_phys_pos&, T*);

int at_phys_pos(const FEL_phys_pos&, FEL_cell_interpolant*, T*);

int at_phys_pos(const FEL_phys_pos&, FEL_cell_interpolanté,
FEL_cell_interpolant*, T*);

int at_phys_pos(const FEL_phys_pos&,
const FEL_cell_interpolant&, T*):

The first three of these calls retrieve field values directly from nodes (or sets
of nodes), and do not involve any spatial interpolation. at_vertex.cell() re-
turns field values from an individual vertex in the mesh, and at.cell () returns
an array of field values from the group of mesh vertices making up a cell. The
cell can be any type supported by FEL (see Table 5.1), and since one cell type is
FEL_CELL_VERTEX, at_vertex.cell() is really just a specialized version of
the more general at_cell (). Because no spatial interpolation is necessary to fetch
field values at cell vertices, at cell_interpolant () simply disregards the inter-
polant part of the cell_interpolant, and in all other respects is essentially the same as
at_cell (). Itis provided as a convenience to the user.

The calls at_structured.pos() and at_phys.pos() can retrieve field
values at arbitrary locations, as specified in computational (structured meshes
only!) or physical coordinates, respectively. - The requested location may not co-
incide with a mesh vertex, so some type of spatial interpolation is necessary. In
at_structured.pos () the interpolation is always performed in compatational
space, using the computational coordinates supplied with the query. This is tantamount
to isoparametric interpolation, discussed in Chapter 9. With at_phys.pos (), the
spatial interpolation is done in either computational space or physical space, depend-
ing on the current interpolation mode (see Chapter 11 for details about setting the inter-
polation mode). In either case, if repeated and relatively localized at_phys._pos ()
queries will be made, much of the “set-up” work associated with the interpolation can

86 CHAPTER 17. FIELDS

be profitably saved and potentially reused. Previous point location and interpolation in-
formation can be cached in an FEL_cell_interpolant object, and the overloaded
versions of at_phys_pos () support the reuse of these hard-won data. For this rea-
son, there is a hierarchy of at _phys_pos () calls, and the most appropriate call for a
given field query depends on how much prior knowledge is on hand:

e at_phys.pos{const FEL.phys.pos&, T*) doesglobal pointlocationto
find the mesh cell enclosing the queried physical position, builds an interpolant
based on that cell's geometry, uses the interpolant to produce an interpolated
field value which it stores into T*, then deletes the interpolant. This is the most
expensive and most extravagant at_phys_pos () call, and is generally used
only when an isolated field value is required.

e at_phys.pos(const FEL phys.pos&, FEL.cell._interpolant?*,
T*) does global point location to find the mesh cell enclosing the queried
physical position, builds an interpolant based on that cell’s geometry, uses the
interpolant to produce an interpolated field value which it stores into T*, then
stores the interpolant into FEL.cell_interpolant*, whence it is returned
to the client. This is just as expensive as the previous call, but at least now we
have the possibility of reusing the information stored in the cell interpolant!

e at_phys_pos{const FEL.phys.pos&, FEL.cell_ interpolantk,
FEL.cell_interpolant*, T*) does “local” point location, i.e. starting
in the cell of the supplied FEL_.cell_interpolant&. This will converge
much more quickly than a global search, if the queried physical point is
nearby; and there is the added bonus that the interpolant part of the supplied
FEL.cell_interpolant can be reused, if the queried physical point falls in
the supplied cell. In any case, the current cell and interpolant are returned via
FEL_cell_interpolant for the next go around. This is a safe and efficient
method if successive at_phys_pos () calls are highly spatially correlated, as
when integrating a stream line, for instance. Be warned, however, that the local
search can be much slower than a global search, if the desired phy51cal point is
far from the supplied cell.

. at-phys-pos (const FEL_phys.pos&, const
FEL.cell_interpolant&, T*) doesn’t do point location at all, but
simply assumes the provided FEL.cell_interpolant is appropriate and
goes ahead with the interpolation. This is certainly the fastest at _phys._pos ()
call, but risky if you're not sure the FEL_cell._interpolant matches the
FEL._phys.pos. If it doesn’t, the at call may fail, but even worse, it may well
succeed, and silently produce garbage that may or may not be easily recognized
as such. Be sure you know what you're doing if you use this streamlined
at_phys_pos variant.

Allthe at_* () calls apply to time-varying fields, in which case temporal interpola-
tion may be necessary (may because temporal interpolation is bypassed if the requested
time falls squarely on a timestep). The positional classes in the various at_* () calls

17.3. FIELDS IN DETAIL 87

all have an entry for time, which is simply ignored in time-invariant fields. See Chap-
ter 25 for a more detailed discussion of time-varying fields.

The at_* () calls store the field values they retrieve into locations specified by a
user-supplied pointer (T*). The return value of the function itself signifies the outcome
of the retrieval: FEL_OK for success, and other values resulting from various mishaps.
If the at () call fails, the returned field value slot (T*) will probably be unchanged,
and the returned FEL_cell_interpolant will probably be bogus. Since the T* is
frequently reused, it may still point to a valid looking value, and be unwittingly used.
Reusing a bogus FEL.cell_interpolant may resultin gross inefficiencies, further
failed at calls, or even a core dump (typical scenario: failure to create an interpolant re-
sults in it being set to NULL, and then one blindly uses itin an at _phys._pos (const
FEL_phys_pos&, const FEL.cell.interpolant&, T*) call... SIGSEGV
lies this way). For these reasons, good coding style, and general peace of mind, one
should always check the return values of the at _* () calls.

17.3.3 Iterating over fields

As a convenience, FEL_f ield supports the same iterator interface as FEL.mesh. In
fact, iterator methods invoked on a field are merely forwarded to the field’s mesh. This
shorthand somewhat compromises the abstraction of a field as a continuous domain,
but allows a more relaxed coding style in which one simply makes all function calls off
a field, without having to remember which ones are more mesh-related. For instance:

int foo(FEL_float_field_ptr field)

{
float f[FEL_CELL_MAX_NODES];
field->set (FEL_SIMPLICIAL_DECOMPOSITICN,Q); // forwarded
FEL_cell_iter ci;
for (field->begin(&ci); !ci.done; ++ci) // forwarded
{
field->at_cell(*ci,f); // field method
if (any(£)<0.0)
field->coordinates_at_cell(*ci,c); // forwarded
field->at_phys_pos(average(c),h &f) // field method
cout << (*ci)
<< "has negative vertex: "
<< "scalar at centroid = "
<< £
<< endl;
}
}

See Chapter 16 for a more complete discussion on the capabilities and uses of
iterators.

88 CHAPTER 17. FIELDS

17.3.4 Eager fields

FEL defaults to “lazy evaluation” of field values. This means that all field values FEL
returns via the at_* () calls, and any intermediate values required for their evaluation,
are generated only when needed to satisy a given at.* () call. The sole exceptions to
this rule are the FEL_core_f ield nodal values, which reside in a buffer in memory,
or perhaps on disk in the case of a FEL_paged.field. The creation of a derived field
merely sets up an appropriate filtering mechanism, which is not pressed into action
until derived values are requested. Particularly in the case of highly derived fields,
lazy evaluation saves a lot of storage space and setup time, at the expense of slower
turnaround when any values are actually needed, and potential redundant calculations
if the same locations are queried over and over again.

Sometimes it might make better sense to evaluate derived fields at all their mesh
vertices and store these results in memory. Then when node values are needed, FEL
merely has to fetch them, for immediate return, or for derivative or interpolation pur-
poses. This “eager evaluation” strategy essentially converts a derived field into a core
field. It requires more storage space, but particularly in the case of highly derived
fields, can provide faster immediate access, and can also provide longer term savings
by eliminating redundant calculations if the same locations are repeatedly queried. An
eager field is a field level cache.

One creates an eager field by invoking get_eager_field(), which is
a method on FEL_typed._field, so it can be called on any typed field.
get_eager_field() returns a FEL_pointer to the same type of field that calls it.
Thus, assuming lazy_vector_field is already defined:

FEL_vector3f_field _ptr eager_vector_field =
lazy_vector_field->get_eager_field{();

In the case of time-varying fields, get_.eager._field() requires an argument
specifying the computational time of the newly produced field; see Chapter 25 for
details. If get _.eager_field() fails — most likely because it can’t allocate enough
memory or, in the time-varying case, if the time is invalid — it returns NULL. Be

sure to check the return value of get_eager field() before you do something

embarassing like trying to dereference a NULL pointer. -
Eagerly evaluated fields are probably a loglcal choice if you are faced with some
combination of the following:— — ~— -

1. you need the quickest possible access to a field
2. you are repeatedly accessing lots of locations in the field
3. you have a very highly and expensively derived field

4. you have enough memory

An application supporting interactive sweeping of a gridplane through a velocity x
vorticity magnitude field is a good example meeting the first three criteria above.

17.3. FIELDS IN DETAIL 89

17.3.5 Field type “informant” functions

The FEL field class hierarchy strives for polymorphic behavior, but sometimes you just
can’t pretend anymore and you simply must know what specific type of field is really
being represented by some generalized FEL field pointer. For such desperate times,
FEL provides type-specific “informant” functions which return true or false depending
on whether the invoking field meets the criterion encoded in the function name. There
are six such functions:

bool is_core_field();

bool is_time_series_£field();
bool is_float_£field();

bool is_vector3f_field();
bool is_plot3d_qg field();

bool varies_with_time();

These functions are methods on FEL_f ield, so they can be called on any type of field
whatsoever. Note that a given field can return true for more than one of the queries;
only the return values from is_float_field(), is.vector3f.field(), and
isplot3d.g.field() are mutually exclusive.

An affirmative response to an is_*_field () call indicates that the queried field
really is an object of the queried type, so that a valid downcast to the queried type is
possible. In fact, type confirmation before downcasting is the primary intended use of
the is.*_field() calls.)

On the other hand, varies.with.time () can return true for any of the field
types which can be built on top of a time-varying field. The varieswith.t ime ()
query is generally used as part of a switch or optimization in a general application, since
the methods and resources for managing steady and unsteady data are so different.

Note that on a given field, varies.with.time() can return true and
is.time.series_field() may return false. This would happen, for example, if
the field in question were a derived field built on top (directly or indirectly) of a time se-
ries field. Keep in mind thatan is_*_field() call tells you where a field is declared
in the FEL class hierarchy, whereas varies with_time () tells youonly thata field
has a time-varying member somewhere in its individual lineage (the group of fields that
are “chained” together by successive definitions). In biological terms, is_*_field()
calls are queries about phylogeny, and varies.with-time() pertains to ontogeny.

Using the informant functions, one can be tempted to write code like this:

int foo(FEL_field_ptr field)

{
if (field->is_float_field())

do_scalar_stuff (FEL_FIELD_TO_FLOAT_FIELD_CAST(field));

else if (field->is_vector3f_£field{))

do_vector_stuff (FEL_FIELD_TO_VECTOR3F_FIELD_CAST(field));

else
return 0;

90 CHAPTER 17. FIELDS

return 1;

Suit yourself, but be aware that this explicit style may become hard to maintain if

used with abandon. If you have lots of type-dependent code, it may be better to localize =

the branch points, say by pushing them all inside a “Factory” class, which manufactures
polymorphic objects that can be passed to type-independent functions. - — -

17.3.6 (dds and ends

Min/max values

Sometimes it is useful to know the minimum and maximum values of a scalar field, for
example if one is fine-tuning a transfer function. To this end, FEL provides the method
get_min_max{), which returns the minimum and maximum nodal values of a scalar
field:

int res;

float min,max;

res = some_float_field->get_min_max(&min, &max) ;
if (res == FEL_OK)

For time-varying fields the method requires an additional argument specifying the
computational time, and as usual, the function return value signals the final outcome of
the call. Although the method is declared on FEL_typed_field, it produces mean-
ingful results only on float fields, i.e. fields on which is.float_field() returns
true. For all other field types, get .min.max () prints a message on standard error,
leaves the pointer arguments untouched, and returns something other than FEL_.OK.

In addition to taking care of the dirty work of iterating over the field in search of ex-
trema, get _min_max () caches the minimum and maximum field values once it finds
them. On any given field, the second and subsequent invocations of get_min.max
merely conjure up the cached values. This is very fast, and makes it unnecessary for
the client to store the minimum and maximum field values explicitly.

User data e .
All FEL fields have two slots for user-deﬁnéd data:

int user_type:
void* client_data;

These are part of the top level FEL_field interface, so they are available in any
field.

The user_type entry is a single user-managed integer that is meant to be used as
a simple type-tag if, say, the user wants to categorize fields differently than FEL does.
One scenario has the user assigning to the tag at field creation time, using a custom
enumeration. Functions can then be written to branch in their treatment of the fields

17.3. FIELDS IN DETAIL 91

after examining the tag (but see warnings above in Section 17.3.5. The tag could also
be used to track individual instances of fields, rather than fypes.

The client_data is a general purpose pointer that can be used to associate ar-
bitrary data with a field. One simple possibility for using client.data is just a
generalization of the user_type scenarios. The user could attach a struct toa
field, which contained type and instance records, and perhaps some other useful de-
scriptive information. Another idea is to use the client._data hook to turn tradi-
tional data-driven frameworks inside-out: Instead of constructing a framework which
manages fields, by explicitly associating them with particular meta-data, visualization
techniques, and so on, one could stuff all the bookkeeping inside the field itself, to- -
gether with appropriate behaviors for interacting with certain environments — so that,
in the extreme, fields could largely manage themselves. Developers should keep in
mind, however, that while the client_data mechanism allows fields to be arbi-
trarily enhanced and extended, such modifications are likely to be relatively domain
specific, and should not be confused with enhancements and extensions to the Field
Encapsulation Library itself.

n

92

CHAPTER 17. FIELDS

Chapter 18

Core Fields

The previous chapter discussed the generic interface declared for all fields on the
FEL_field and FEL_typed_field base classes. This chapter presents a more spe-
cific treatment of a particularly important subclass of typed field called a core field.

18.1 What are core fields?

Core fields (FEL_core.field<T>) are fields whose node values reside in memory.
This is in contrast to the various sorts of derived fields, for which node values are
generated only on demand. Core fields live at the roots of “derivation chains” (see
Chapter 19) and provide raw values which derived fields modify.

Core fields are produced by reading a solution file from disk, by executing
FEL_typed.field: :get eager_field(), or by explicitly associating a mesh
with a node buffer in a core field constructor. B A

Reading solution files from disk is the subject of Chapter 22, and
get_eager_field() is discussed in Chapter 17. Here we will describe how to
construct a core field “manually” in memory. This operation is essential, for example,
if one wants to load data directly from a field simulation into FEL, or if one wants to
write a file reader for FEL.

18.2 The node buffer

As with any other type of field, construction of a core field requires a preexisting mesh.
Meshes may be created by reading in a file from disk (see Chapter 22), or by declaring
a FEL_regular.mesh. Details for creating a mesh “manually” in memory are given
in Chapter 12 (for structured meshes) and Chapter 13 (for unstructured meshes).
Assuming a mesh is already on hand, the central task of creating a core field is
allocating a buffer and filling it with the node values. In most cases, the buffer should
be allocated on the free store using either the new operator or operator new (or
operator newl), if your compiler supports it). This is because in most cases, once

93

94 CHAPTER 18. CORE FIELDS

the core field is created, memory management of the node buffer is turned over to FEL,
and when the reference count to a core field reaches zero, FEL will try to deallocate its
node buffer using delete[]. Attempting to delete[] memory which hasn’t been
obtained via new is disastrous.

If you want to retain responsibility for memory management of core field node
buffers, you can do so by requesting that the core field “suppress deallocation”. If this
option is chosen, the node buffer is left untouched when the core field is destructed.
In this case, therefore, the memory need not be allocated with new — the memory
may be obtained by some other dynamic allocator, or it may be static. In any event,
the user is responsible for maintaining a handle to the node buffer, and for freeing the
memory if so desired. Of course, the user should not deallocate the node buffer while
- the core field is still in use! Directions for choosing the “suppress deallocation™ option
are given below.

Core fields are templatized, and can be constructed with any node type T supporting
a few basic arithmetic operations (see Chapter 21). Since the node buffer must hold
a type T for every vertex of its associated mesh, the buffer must be at least of size (in
bytes): ' ’

mesh->card(0) * sizeof(T)

The elements of the node buffer must be arranged in the same order as the corre-
sponding vertices of the associated mesh. For structured meshes of dimension (idim,
jdim, kdim), this means that the sequential memory layout has idim varying most
rapidly, and kdim most slowly. C/C++ programmers should be wary here, as this
column-major convention may seem out of place (but in general is more convenient

for data coming from predominantly FORTRAN solvers). For unstructured meshes,
the sequential layout is arbitrary and completely determined by the vertex ordering in
the mesh. In both the structured and unstructured cases, FEL vertex cell iterators fol-
low the linear arrangement of mesh vertices in memory, so if you are creating a node
buffer whose values depend on vertex coordinatés, an FEL_vertex.cell_iter can
be employed to guarantee vertex-node correspondence.

~ For core fields with multi-element node types, based on either structured or un-
structured meshes, the multiple elements associated with a given node should be layed
out as a contiguous group in memory. Note that this natural layout differs from certain
file formats, including the PLOT3D solution file format, in which vector components

are grouped together.

18.3 Constructors and suppressé&' deallocation

There are three core field constructors. With a preexisting mesh and an allocated and
filled node buffer, one creates a core field with one of the following two constructors:

18.4. ANEXAMPLE 95

FEL_core_field(FEL_mesh_ptr, T*, char* = rcore_field");
FEL_core_field(FEL_mesh_ptr, T*, bool, char* = "core_field");

The FEL_.mesh_ptr argument takes a pointer to the intended mesh of the core field.
T* should point to the head of a node buffer of type T which you have allocated and
filled with type T's, according to the scheme outlined above. The bool argument in
the second constructor is used to indicate whether or not you want to suppress deallo-
cation of the node buffer when the core field’s reference count reaches zero: true for
suppressed deallocation (you are responsible for deallocation), false for automatic
deallocation (FEL assumes management of the node buffer). If you use the first con-
structor, “suppressed deallocation” defaults to false. The last core field constructor
argument is an optional name, which defaults to “core field” if you don’t supply a more
imaginative name of your own.
The third core field constructor —

FEL_core_field(FEL_mesh_ptr, FEL_pointer< FEL_core_field<T> >,
char* = "shared_core_field");

— takes a pointer to a preexisting core field rather than a pointer to a node buffer,
and creates a new core field by binding the node buffer of the preexisting core field
to the incoming mesh represented by FEL_mesh.ptr. This results in two core fields
which share a single node buffer but associate the data with different meshes. For this
to make sense, the different meshes must have the same number of vertices (meshl-
>card(0) == mesh2->card(0))— if this is not the case, bad things will hap-
pen. In a “shared core field” the node buffer is a shared resource, so the suppress
deallocation option defaults to true. '

As we have just seen, the suppress deallocation option on a core field is set at
construction time, either implicitly or explicitly, but it can also be changed at any time
by a set call, if you change your mind about node buffer memory management:

// FEL deletes buffers:

my_core_field->set (FEL_SUPPRESS_DEALLOCATION, 0);
// you’'re on your OwWn:

my_core_field->set (FEL_SUPPRESS_DEALLOCATION, 1};

1t’s probably not a good idea to set suppress deallocation to false (0) on a shared core
field.

18.4 An example

Here is a rather contrived example which constructs a core field “manually”. See
Chapter 12 for a description of FEL_regular.mesh, and Chapter 16 for details on
FEL.vertex.cell_iter.

96 CHAPTER 18. CORE FIELDS

#include "FEL.h"

int main{)
{
int idim=3, jdim=4,kdim=5;

FEL_mesh_ptr mesh =
new FEL_regular_mesh(idim, jdim,kdim,1,1,1);

FEL_vector3f* node_buffer =
new FEL_vector3f{mesh->card(0)];

assert (node_buffer);

int n=0;
FEL_vertex_cell_iter iter;

// £ill node buffer:
for (mesh->begin(&iter);t!iter.done(};++iter)

{

int i = (*iter) [0];
int j = (*iter)[1];
int k = (*iter) (2]:

nodefbuffer[n++].set(atanZ(j.i),
atan2(k,sqrt(i*i+j*j)),
sgqrt(i*i+j*j+k*k)};
}

// create core field
// (suppress deallocation default is false)
FEL_vector3f_field ptr my_core_£ield =

new FEL_core_field<FEL_vector3f>

(mesh, node_buffer);

FEL_vector3f v;
for (mesh->begin(&iter);!iter.done();++iter)
{

my_core_field->at_vertex_cell(*iter,&v);
cout << *iter << " : " << v << endl;

}

my_core_field = NULL; // node_buffer deletell’d

return 0;

18.5. GET_EAGER_FIELD() 97

18.5 get_eager_field()

Core fields are also generated by the get _eager_field() call. This method, avail-
able on any field, evaluates the field at every vertex and writes the results into a newly
allocated node buffer, which is bound to the mesh of the calling field. This function is
typically used to convert a lazily evaluated derived field into a core field, for quicker
access time, but could conceivably be used to duplicate an existing core field, in the
unlikely event this was useful. More verbiage on get _eager_fieldcanbe found in
Chapter 17.

[L

98

CHAPTER 18. CORE FIELDS

Chapter 19

Derived Fields

19.1 Whatis a derived field?

A “derived field” is a field whose values are computed (derived) from one or more other
fields. The derivation referred to here involves some kind of mathematical mapping,
and should not be confused with the C++ sense of derivation (although the FEL derived
field classes do inherit from other classes).

A derived field is essentially a filter, built on top of some number of component
fields. The derived field and all its component fields necessarily share the same mesh.
When the derived field is queried for a value at some location, it forwards the request
to its component fields, gathers the values returned by the component fields, and then
transforms these field values according to some function before passing them back to
the caller. S

The function that the derived field uses to produce its values from its component
field values is called a mapping function. As its name suggests, the mapping function
maps component field values into derived field values. The mapping functions are
either predefined by the library (more on these below) or user-defined. User-defined
mapping functions allow arbitrary transformations of field data to be encapsulated in
the retrieval process, so that field queries on derived fields can return data directly in a
form suitable for a particular task.) o ' '

The component fields of a derived field can be of any type, including other de-
rived fields. This last possibility allows “derivation chains” of arbitrary depth, and at
any level the three types of component fields can be freely mixed. Naturally, several
different derived fields can share component fields. Thus an application can build an
arbitarily complex set of derived fields, but their relationships can always be described
by a directed acyclic graph of one or more components. Since queries on derived fields
are always forwarded to component fields, any given derivation “lineage” must even-
tually terminate in a field type capable of producing a value autonomously. The field
types that fit this bill are core fi€lds (which pull a value from memory), paged fields
(which pull a value from memory or disk), “mesh as fields” (which use mesh coordi-
nates as field values), and constant fields (which simply return the same value for all

99

100 CHAPTER 19. DERIVED FIELDS

queries).

19.2 Lazy vs. eager evaluation

By default, evaluation of derived field quantities is completely demand driven. That is,
no field values are generated when a derived field is created: derived field quantities
are computed only in response to a client query. This strategy is variously described as
lazy evaluation, or deferred evaluation, or a pull model.

Because of the lazy evaluation paradigm, creation of derived fields requires very
little time and storage. Internal creation of a derived field consists mainly of registering
the component fields and mapping function, which are represented by pointers in the
derived field. On our workstations (SGI R10Ks), creation of a derived field requires
about 30 microseconds, and about 200 bytes of memory. Thus it is quite reasonable
for an application to present many derived fields (hundreds, or more!) to a user as
selectable options, creatmg them either at startup nme or on demand even if most of
the fields are never used. —

The downside of the lazy evaluation scheme is lengthlcr denved ﬁeld valuc retrieval
times, compared to core fields, since the derived field must manufacture its values on
demand. For simple derived fields (single core component field, mapping function re-
quiring only local values) retrieval times are about 25% longer than core field retrieval.
As the derivation chain comprises more component fields and more involved mapping
functions, the derived field retrieval times increase accordingly.
~ If retrieval time is at a premium and ample storage space is available, it may be
desirable to precalculate and store derived field values across the entire domain, or at
least retain and reuse thgsg derived field values which are generated to satisfy client re-
quests. The first of these aims can be accomplished by way of get _eager_field(),
a method on FEL_typed_field which iterates over all vertices of its invoking field
and writes their values into newly allocated storage. This converts a derived field
into a core field!, and may be the logical choice if one wants to minimize retrieval
time on a highly derived field. The second option above can be realized by creating a
FEL_cached_field on top of a derived field, which retains derived field values in
a cache, and attempts to satisfy client requests from the cache before deriving anew.
Cached fields may be useful if a derived field is going to be accessed repeatedly. Ex-
amples of creating eager and cached fields are given below.

19.3 Mapping and interpolating

There are two distinct types of derived fields in FEL: FEL.map.then_inter-
polate.derived_field* = and FEL.interpolate.thenmap.der-
ived.field*. As the names suggest, the difference between these two types
depends on whether the mapping function is applied before or after any necessary
interpolation. More specifically: To satisfy a general physical or computational

spacc query (i.e., at.phys_pos () or at-struc tured_pos ()),a ﬁcld must ﬁrst

1... or can also be used to generate a copy of a core field, in the unhkely event this was desired.

19.4. BUILT-IN DERIVED FIELDS 101

perform point location to determine which gridcell contains the query point. Then
field values are obtained for each vertex of this enclosing cell and used to interpolate a
field value at the enclosed point.

e In an FELmap.then_interpolate_derived.field*, the derived field
queries its component field(s) at each vertex of the enclosing cell, applies the
mapping function at each vertex to convert component field quantities to derived
field quantities, then interpolates the derived field quantity at the query location.

e In an FEL.interpolate_thenmap.-derived field*, the derived field

queries its component field(s) at each vertex of the enclosing cell, interpolates

- the component field quantities at the query location, then applies the mapping
function to convert the component field quantities to the derived field quantity.

The relative order of mapping and interpolation can make a big difference
in the final derived field value, particularly if the mapping function is nonlinear.
Which ordering is most “appropriate” depends on the problem at hand. In ad-
dition to numerical implications, there are efficiency considerations: mapping be-
fore interpolation invokes the mapping function on every vertex (potentially expen-
sive for a complex mapping function) but interpolates only a single variable; in-
terpolating before mapping invokes interpolation on all component field values (po-
tentially expensive if there are several component fields, with complex node types)
but applies the mapping function only once. The built-in derived fields are all of
type FELmap-then.interpolate derived_field*. This option produces
the same results one gets with precalculated (eagerly evaluated) component fields.
Note that for vertex-based queries (i.e., at-cell()), which entail no interpola-
tion, the distinction between FEL.map.then_interpolatederived.field*
and FEL_interpolate_thenmap.derived.field* is immaterial.

19.4 Built-in derived fields

FEL provides several “prepackaged” derived fields. The differential operator fields are
specialized derived fields which are discussed separately in Chapter 20. The rest of the
FEL built-in derived fields are each briefly described in the following list. The sam-
ple declarations indicate the type of the derived field produced, and also the type(s) of
the component fields which must be provided as arguments. The generic component
fields float_field and vector3f_field represent fields already created in an
application, from which you want to derive some new fields. The newly created de- .
rived fields are called derived.float_fieldand derived.vector3f_field.
All derived fields are templatized, but for clarity the typedef’d names are used here.
Therefore further variations on these built-in derived fields can be generated by using
the templatized declarations directly.

e FEL_float_field ptr derived.float.field =
new FEL_magnitude_of.vectorBf_field(vector3f-field) ;

102

CHAPTER 19. DERIVED FIELDS

derived.float_field now points at a newly created scalar field whose val-
ues are the lengths (Euclidean norms) of the vectors at the corresponding points
invector3f_field. :

FEL_float.fieldptr derived_float.field =
new FEL_absoluge,value_of-float-field (float.field);

derived.float_field now points at a newly created scalar field whose val-
ues are the absolute values of the scalar values at the corresponding points in
float_field.

FEL_float_field ptr derived.float_field =

- new FELnegateof_float_field(float_field);

derived._float_field now points at a newly created scalar field whose val-
ues are the additive inverses of the scalar values at the corresponding points in
float_field. '

'FEL_vector3f.fieldptr derivedvector3f field =

new FELnegate.ofvector3f_.field(vector3f.field);

derived.vector3f_field now points at a newly created vector field whose
values are the additive inverses of the vector values at the corresponding points
in vector_field —thatis, the corresponding vectors in vector_field and
derived.vector_field have equal magnitudes but opposite directions.

?Eﬁ;rfi’éa;tﬁffield_;pgig Q9rived;fioét_field = 7 =
new FEL_sum.of_float_field{float.fieldl, float.field2);:

derived.float_field now points at a newly created scalar field whose
values equal the sum float_fieldl and float_field2 at corre-
sponding points — that is, derived.float_field = float.fieldl +
float.field2.

FEL.vector3f_field.ptr derived.vector3f_field =
new FEL_sumof_vector3f.field(vector3f_fieldl, vec-
tor3f.field2);

derived_vector3f.field now points at a newly created vector field
whose values equal the vector sum of vector3f.fieldl and vec-
tor3f_field?2 at corresponding points — that is derived.vector_field
= vector3f.fieldl + vector3f_field2,

FEL.float_fieldptr derived_float.field =
new FEL_differenceof_float.field(float_fieldl,
float_field2);

derived.float_field now points at a newly created scalar field whose val-
ues equal the differences between float_fieldl and float_field2 atcor-
responding points — that is, derived float.field = float.fieldl -
float.field2.

19.4. BUILT-IN DERIVED FIELDS 103

) FEL_vector3f_fie1d.ptr derived_vectorBf_field =
new FEL-difference.of.vectorB f-field(vectorBf-fieldl,
vector3f-fiel<32) ;

derived.vector3 £_fieldnow pointsata newly created vector field whose
values equal the difference vectors between vector3f.f jeldl and vec-
tor3f.field2at corresponding points — that is, der jved.vector.f ield
= vector3f.f ieldl - vector3f.f ield2.

. FEL_float_field_ptr defived_float-field =
new FEL_product_of_f 1oat-fieldl float.f jeldl,
float_fiele) ;

derived-f loat.field now points at a newly created scalar field whose
values are the products of £loat-fieldl and float.field2 at cofrre-
sponding points - that is, derived-float-f ield = float_fieldl *
float.field2.

] FEL-float_field_ptr derived_float-field =
new FEL-quotient_of_f1oat_fie1d(float_fieldl,
float_fiele) ;

derived.f joat.field now points at 2 newly created scalar field whose
values are the quotients of float.fieldl and float-f 1eld2 at cofrre-
spond'mg points - that 1s, derived_float_field - float.f ieldl /
float.field2.

. FEL_float_field_ptr derived-float_field =
new FEL_dot_of.vectorBf-field(vectorBf_fieldl, vec-
tor3f_fie1d2) ;

derived_float_f jeld now points at a newly created scalar field whose
values are the scalar or dot products of vec\:or3f-fieldl and vec-
tor3f_field2.

J FEL_vectorBf-field_ptr derived_vector_field =
new FEL-cross_of_vector3£_field(vect:or3f_field1, vec-
tor3f-field2) ; -

derived_vector_f ield now points ata newly created vector field whose
values are the vector Of cross products of vector3f-fieldl and vec-
tor3f_field2. e

o FEL.float fieldptr gerived float.field =
new FEL_component_of_vector3f-field(vector3f-fie1d, i)

derived.float.f jeldnow pointsata newly created scalar field whose val-
ues are the ith component of the vectors at the corresponding points in vec-
tor3f.field. Component numbering starts at 0.

L FEL-float_field_ptr derived_float-f.ield =
new FEL_component.of.plot3d.q_field(ploth_q_field, i)

104 CHAPTER 9. DERIVED FIELDs

derived._f loat_fieldnow points at a newly created scalar field whose val-
ues are the ;A component of the PLOT3D solution vectors at the corresponding
points in plot3d.qg.f ield. Component numbering starts at 0.

194.1 Customizing the built-in derived fields

As mentioned above, derived fields are templatized, and the built-in fields are no ex-
ception: the examples just shown use typedef'd versions to hide the template syntax.
You can achieve some leve] of Customization of the built-in derived fields by using the
template syntax directly.

The templategd declarations of the built-in derived fields look like this:

template <class TQ, class FROM>
class FEL_magnitude_field;

template <class TQ, class FROM>
class FEL_absolutefva}ue_field;

template <class TO, class FROM>
Class FEL_negate_field ;

template <class TQ, Cclass FROM1, class FROM2>
class FEL_difference_field; .

template <class TO, class FROM1, class FROM2>
class FEL_sum_field;

template <class TQ, class FROM1, class FROM2>
Class FEL_product_field;

template <class TO, class FROM1, class FROM2>
class FEL_quotient_field;

template <class TO, class FROM1, class FROM2>
class FEL_dot_field;

template <cléss TC, class FROM1, class FROM2>
class FEL_cross_field;

template <class TO, class FROM>

class FEL_component_field;

In these declarations, the To and FROM classes are the template Parameters, or
“type placeholders”. The FROM Parameters represent the type(s) of the component

19.5. PLOT3D DERIVED FIELDS 105

field(s), and the TO parameter represents the type that is derived from them. These
parameters must be replaced with the actual input and output types of the derived field
you wish to construct — using the appropriate syntax, of course.

__For example, say you want to multiply a vector field by a scalar field, that is,
you want a derived vector field which scales the vectors of one of its component
fields by the scalar values of its other component field. Here’s a declaration using
FEL.product_field:

FEL_vector3f_field_ptr scaled_vector_field =
new FEL_product_field<FEL_vector3f, FEL_vector3f, float>
(unscaled_vector_field, float_£field);

The arguments in the <>’s are the template parameters. The first such argument
is the TO type: this derived field will produce vectors. The second and third template
parameters are the FROM types — in other words, the types of the component fields from
which the derived field will produce its values.

The arguments in the ()'s are fodder for the derived field’s constructor. These
arguments are pointers to fields of type FROML and FROM2 - in this case, an
FEL.vector3f_field.ptr,andanFEL_float_field ptr,respectively. These
fields must both share the same mesh, and must be properly initialized at the time the
derived field is constructed. All the constructors for the built-in derived fields require
pointers to fields of the FROM types (and, optionally, a name for the field).

In this example derived field (scaled vector_field), the vectors of un-
scaled.vector.field are scaled by the floating point values of float_fieldat
corresponding locations. One could invoke a single (location invariant) scaling factor
by making float_fieldan FEL.constant_field (see Chapter 17).

19.5 PLOT3D derived fields

In addition to the generic built-in derived fields described in the last section, FEL sup-
plies over fifty specific derived fields defined by PLOT3D. These predefined derived
fields can be created by calls to specialized convenience functions, or by enum’ed re-
quests to a PLOT3D “field manager”. For more information on both of these options,
see Chapter 24.

19.6 Constructing a custom derived field

If the built-in derived fields don’t offer the functionality you need, you can define your
own from scratch. And even if you can achieve the same functionality by other means,
encapsulating certain data transformations in a derived field can be an effective pro-
gramming strategy. The most important and involved step in defining a derived field is
creating the mapping function.

106 CHAPTER 19. DERIVED FIELDS

19.6.1 Writing a mapping function

The mapping function defines how derived field data are actually derived from the com-
ponent field(s). The mapping function must be declared and defined by the user, and
passed to a derived field constructor as a pointer. Each of the derived field constructors
expects a pointer to a function with one of three prototypes, depending on whether the
derived field operates on one, two, or three component fields:

int map_func(const FEL_solution_globalsk,
const FROM1*,
void*,
TO*)

int map_func(const FEL_solution_globalsk,
const FROM1*, const FROM2*,
void*,
TO*)

int map_func (const FEL_solution_globalsé&,
const FROM1*, const FROM2*, const FROM3*,
void*,
TO*)

Of course, you can name your own mapping function whatever you'd like;
*“map_func” is used here solely as an illustration.

TO, FROM1, FROM2, and FROM3 are template “type placeholders”, which are
replaced by actual types in actual mapping function declarations and definitions. The
only difference among the three prototypes is the number of FROMs, which corresponds
to the number of component fields in the derived field. In all cases, the TO parameter
represents the node type of the derived field itself. Thus, the FROMs represent the input
to the mapping function, the TO represents the output, and the guts of the mapping
function just specify how the FROMs produce the TO.

Here is an example of a mapping function, which calculates the magnitude of the
difference between two input vectors. This can be used to construct a derived scalar
field, whose isosurfaces, for instance, show the spatial pattern of discrepancy between
two vector fields.

int vector_difference_mag(const FEL_solution_globalsk,
const FEL_vector3f~* vO0,
const FEL_vector3f* vil,
void*,
float* mag}

*mag = FEL_magnitude(*v0 - *vl);
return 1;

19.6. CONSTRUCTING A CUSTOM DERIVED FIELD 107

This function just subtracts one input vector (v1) from the other (v0) and passes
the vector result to FEL_magni tude, whose floating point return value is stored into
the location pointed to by mag. The FEL_solution globals& and void* are
unnamed here to preclude compiler warnings about unused variables. The first three
arguments must be declared const to inform the compiler that they are not modi-
fied by the mapping function. You must be sure to include these const declarations,
and you must be sure to honor them (i.e., don’t try to modify these arguments in the
mapping function), or your code will not compile. Also note that the first argument
is a reference and must be so declared. Omitting either the const qualifier or the
reference declarator (“&’) will usually cause a compiler error in the derived field con-
structor taking this mapping function (with a message like “no instance of constructor
[for whatever derived field you are trying to make] matches the argument list™).

The transformation of FROMs to TO may involve any sort of mathematical gymnas-
tics one wishes. Additional data which may (or may not) figure in the transformation
are available from the FEL_solution_globals and (if you provide it) the void*.

Using the FEL_solution._globals

The FEL_solution_globals contain a collection of values associated with the de-
rived field. Four of these values —

float free_stream_mach;

float alpha; // angle of attack
float reynolds_number;
float time; // usually not used

— are ultimately taken from the PLOT3D solution file header of the first component
field (or one of its ancestors, if it is a derived field itself). Since the multiple component
fields of a derived field must share a common mesh, they will typically also share the
same header data; but be careful if you are somehow combining disparate data. There
are a handful of other fields in the FEL_solution._globals structure which are
used by various built-in mapping functions.

Here is another sample mapping function, which is set up to receive a veloc-
ity vector input and uses the the free_streammach and alpha values from the
FEL.solution.globals to calculate the perturbation velocity:

int perturbation_velocity(const FEL_solution_globals& sg,
const FEL_vector3f* v,
voidx,
FEL_vector3f* pv)

FEL_vector3f vinf; - -
vinf[0] = sg.free_stream_mach * cos((M_PI/180.) * sg.alpha) ;

vinf([l] = sg.free_stream_mach * sin((M_PI/180.) * sg.alpha);
vinf[2] = 0.; // no sideslip angle beta

*pv = *v - vinf;

return 1;

108 ~ CHAPTER 19. DERIVED FIELDS

Client data via void*

The void* can be used to provide arbitrary client data to the mapping function. At
creation time, you can register a void* with the derived field, and this pointer will
be passed to the mapping function every time it is invoked. This mechanism provides
the mapping function with directions to find any additional data it may require — data
which can be specifically updated for a given query on the derived field.

An example using client data passed to a mapping function will be given below.

Handling exceptional cases

Mapping functions may encounter problematic data. For example, a mapping function
may receive a “0” input value which figures in the denominator of some expression.
Singular cases like these can be indicated by the int return value of the mapping
function. The derived field at_calls forward this return value to the client. As usual,
the client should check the return value of the at_call, and be prepared to respond
appropriately. Ignoring the return value is perilous: if the at_call fails, the field
value “return slot” will not be updated, and therefore will contain stale and possibly
misleading data.

19.6.2 Derived field declarations and constructors

There are two types of derived fields, which allow you to determine the relative or-
dering of mapping and interpolation (see Section 19.3). If you want mapping to pre-
cede interpolation, use FEL map-then_interpolate.derived.field*. If you
want interpolation to precede mapping, use FEL_interpolate.then.map.der-
ived_field*.

The *’s in these class names are wildcards for the number of component fields of
the derived field. The * should be replaced by “1”, “2”, or “3", as appropriate.

The non-built-in derived fields must be declared using template syntax. The tem-
plate arguments are enclosed in angle brackets (<>s), immediately following the de-
rived class type specifier. The template arguments specify the type of the derived field
itself (the output type of the mapping function), and the type(s) of the component
field(s) (the input type(s) of the mapping function). The derived field type (TO) is
given first, followed by the component field type(s) (FROM).

A derived field which implements a “dot product” operation takes two vector fields
(FROM1 and FROM2) and uses them to calculate a floating point value (TO). The tem-
plate part of the declaration would look like:

FEL_map_then_interpolate_derived_field2<float, FEL_vector3f,
FEL_vector3f>

or

FEL_interpolate_then_map_derived_field2<float, FEL_vector3f,
FEL_vector3f>

19.6. CONSTRUCTING A CUSTOM DERIVED FIELD 109

Following the angle-bracketed template arguments is a parenthesized list of argu-
ments for the derived field’s constructor. In order, these are a list of pointers to the
component fields, a pointer to the mapping function, a pointer to client data, and an
optional name. The component field pointers should be listed in the same order as they
appear in the mapping function — this ordering establishes the correspondence between
component field values sent to and received by the mapping function. In both C and
C++ using “&” to get the address of a function is optional, so the name of the mapping
function will serve as a pointer; however, by all means use “&” if it makes you feel
better.

Assuming that we already have on hand component vector fields in-
put_vector_fieldl and input.vector.field2, and a mapping function
make_dot_product that converts two vectors into a float, complete derived field
declarations follow:

FEL_float_field_ptr dot_product_field =
new FEL_map_then_interpolate_derived_field2
<float, FEL_vector3f, FEL_vector3f>]
(input_vector_fieldl, input_vector_field2,
make_dot_product, NULL);

FEL_float_field_ptr dot_product_field =
new FEL_interpolate_then_map_derived_ field2
<float, FEL_vector3f, FEL_vector3f>
(input_vector_fieldl, input_vector_field2 ,
make_dot_product, NULL, "my_dot_product_£field");

The **NULL’ ’ argument fills the slot for the (unused) void* client data. In
the second example, we’ve given the derived field an (optional) name, which can be
retrieved via dot_product_field->get.name (). It often improves readability
to break up the template and constructor arguments over several lines, as we’ve done
here. A healthy compiler won’t mind.

19.6.3 Derived field checklist

Declaring and constructing a derived field requires some planning. Here is a little
checklist:

e Map then interpolate, or interpolate then map? The relative or-
dering of these two operations is determined by the type of de-
rived field you construct; ie., there are separate types of derived
fields (FELmap-then.interpolate derived.field~ and
FEL_interpolate.thenmap.derived_field* for each option.
See Section 19.3 above.

o How many component fields are there? Component fields are the “input” to the
derived field, from which its values are derived. FEL allows one, two, or three
component fields. This number immediately follows “£ield” in the complete

110

CHAPTER 19. DERIVED FIELDS

derived field class name. It is unusual to need more than three component fields.
If you have more than this number of component fields, you may be able to
“factor” the derivation into parts, each involving three or fewer components, and
construct the overall derivation incrementally.

Wojﬁat'&e meEorﬁﬁeir)iiﬁeldtypes° 'Thés;érrt;'BégW(Tyﬁiéally float,

FEL_vector3f, or FEL plot3d.q) are needed for the template arguments
in the derived class declaration.

s What are the component field instances? The component fields (of the types just

mentioned in the item above) on which the derived field is built need to exist
when the derived field is constructed. FEL pointers to these fields are passed as
arguments to the derived field constructor.

e What is the mapping function? The mapping function converts Vccr)mporA\em field

types to the type of the derived field itself. A pointer to this function must be
provided to the derived field constructor. (Or at least one must provide a func-
tion pointer of the appropriate type, which should actually point to a function of
the approriate type when the derived field is queried. By redirecting the func-
tion pointer registered with the derived field, one could dynamically change the
derivation, based on some conditions, just prior to querying the field...)

e Are there any client data which need to be passed to the mapping function?

A pointer can be registered with the derived field at construction time, which
provides arbitrary data to the mapping function. The data can be changed at any
time, for instance, just prior to querying the field.

19.6.4 A more or less complete derived field example

Here is an example which constructs a derived field representing the signed distance
from a plane. Such a field could be used in conjunction with an josurface routine, for
instance, to implement a cutting plane routine.

typedef struct

(

}

FEL_vector3f n: // normal
float p: // point
hessian; // Hessian normal form of a plane

// the mapping function
int signed_distance(const FEL_solution_globalsk,

{

const FEL_vector3f& test_point,
void* plane, // client data
float* dist)

hessian* hnf = (hessian*)plane;
// calculate signed distance

19.6. CONSTRUCTING A CUSTOM DERIVED FIELD 111

*dist = FEL_dot (hnf->n, test_point) + hnf->p;
return 1;
y -

int cutting_plane(FEL_plot3d_field_ptr plot3d_field,
hessian* plane,
FEL_float_field_enum scalar_field)

FEL_mesh_ptr mesh = plot3d_field->get_mesh();:

// "convert" mesh to position vector field
FEL_vector3f_field_ptr pvec =
new FEL_mesh_as_vector3f_field(mesh);

FEL_float_field_ptr distance_field =
new FEL_map_then_interpolate_derived_fieldl
<float,FEL_vector3f>
{(pvec, signed_distance, plane);

FEL_float_£field_ptr color_by_field =
plot3d_field->make_float_field(scalar_field);

// colormapping via "color_by_ field"
isosurf(distance_field, color_by_field, ...};
1

In this example, the typedef’d struct hessian contains a point and normal defin-
ing a plane. The mapping function signed_distance () uses the point and normal
to calculate the signed distance from the plane (negative on one side, positive on the
other) to an incoming test_point. The mapping function is used by the derived
field distance_field, along with the plane equation, which is provided as client
data (actual argument plane) to the derived field constructor. The derived field is built
on top of a single component field — pvec — which is a field of the position vectors of
the underlying mesh, courtesy of the adaptor class FEL mesh_as.vector3f_field
(see Chapter 17). When distance-field is queried for a value at a given location,
it returns a signed scalar indicating the distance of the query location from the plane
described in plane. Thus an at_cell () call on distance_field will return an
array of values indicating the distance of each vertex of a cell from a plane. Interpo-
lating the O-valued surface on this field (via marching cubes, or the like) will yield the
cutting plane specified by plane.

112 CHAPTER 19. DERIVED FIELDS

Pressure

! 0.720000

0.700000

0.680000

Figure [9.1: A visualization illustrating several uses of derived fields. The white line
originating from the trailing edge of the shuttle wing is a streamline traced in the ve-
locity Jerived field. Using the streamline as a local frame of reference. cutting planes
were oonstructed as in the example in this chapter. and then each plane was trimmed
to adish. Textured on cach disk is the pressure derived tield. Visualization by Chris
lonize LT ThL . R i el o . CoTmIiToL

Chapter 20

Differential Operator Fields

20.1 Gradient, divergence, and curl

The FEL differential operator fields are specialized derived fields which apply the dif-
ferential operators grad, div, and curl, to a preexisting base field, in three-dimensional
Euclidean space. The three operators are typically written in terms of a single operator,
the nabla operator (V).)

20.1.1 Grad

The gradient operator acts on a scalar field and produces a vector field indicating the
local direction and magnitude in which the scalar field is changing most rapidly. In
Cartesian coordinates, where f is a scalar field, f = f(z,y,2):
of. of. 9f
df=Vf=—i+=j+ 5k

grad f f 62:1 + ay'] + 52
The gradient vectors are always perpendicular to the level surfaces (isosurfaces) of f.
The spatial derivative of f in any direction is just the projection of the gradient vector
on that direction.

20.1.2 Div

The divergence operator acts on a vector field and produces a scalar field indicating the
local net outward flow per unit of time and volume. In Cartesian coordinates, where F
is a vector field, F = F(z,y, z), and F; is the z-component of F (likewise for y and
z): '

vFov.po O 0F OF

divF=V .F= 5z + By + e
Locations in a vector field F where V - F > 0 are called sources (more outflow than
inflow), locations where V - F < 0 are called sinks (more inflow than outflow), and
locations where V - F = 0 are called source-free. If the entire field is source-free, F is

called solenoidal. -

113

114 CHAPTER 20. DIFFERENTIAL OPERATOR FIELDS

FEL gradient _lieid1<10,FROM> |

[FEL_difterential_operator_field1<TO.FROM> K—{FEL_divergence_field1<TO,FHOM>}

FEL_curl_field1<TO,FROM> |

[FEL_diffarentiai_operator_{leid<TO,FROM> K

FEL_gradient_field2<TO,FROM> |

YFEL_ditferential_operator_field2<TO.FROM> FEL_divergerce lleld2<TO,FROM>|

FEL curl_field2<TOFROM>]

Figure 20.1: The FEL differential operator field class hierarchy.

20.1.3 Curl

The curl operator acts on a vector field and produces another vector field indicating the
local direction and magnitude of the rotation of the original vector field. In Cartesian
coordinates, where F is a vector field, F = F(z,y, 2), and F; is the z-component of
F (likewise for y and z):

oF, BF) (aF, aF,). (3Fy an)
R + | == - k

curl F =V xF= (By 0z 0z oz Oz dy

At a given location in a swirling vector field, the curl is proportional to the local angular
velocity. The curl is nonzero in “straight” vector fields with shear. Vector fields with
V x F = (everywhere are called irrotational.

20.2 First-order and second-order accuracy

As you can see from the descriptions in the previous section, all FEL differential op-
erator fields require spatial derivatives of their scalar or vector base field values. In
FEL, these spatial derivatives are estimated by either a first-order accurate scheme, or a
second-order accurate scheme, depending on the type of differential operator field you
construct. Figure 20.1 shows that the FEL differential operator field class hierarchy has
two parallel lineages: the “1” or 2" in the class names determines whether a first-order
or a second-order accurate scheme is used in estimating the derivatives used by a givcn
differential operator.... .. » - - - e iR

In the first- order dlfferentlal operator ﬁelds (desccndants of FEL_dl f f er-
ential.operator_£ieldl<TO, FROM>), the same interpolating polynomial
which is used to interpolate values on the base field is analytically differentiated to pro-
duce an expression yielding interpolated derivatives. If the differential operator field in-
terpolation mode (see Chapter 9) is FEL_ISOPARAMETRIC_INTERPOLATION, the
computational space shape functions on a given cell are differentiated with respect to
the computational coordinates, the resulting partial derivatives are evaluated at the ap-
propriate locations, and then transformed into physical space by way of the metrics. If
the interpolation mode is FEL_PHYSICAL_SPACE.INTERPOLATION, the physical

20.3. CREATING DIFFERENTIAL OPERATOR FIELDS 115

space interpolating polynomial on a given cell is differentiated with respect to phys-
ical space coordinates, and the requisite partial derivatives can be evaluated directly
where needed. In either case, the resulting physical space partial derivatives are used
to generate the required differential operator quantities.

In the second-order differential operator fields (descendants of
FEL.different jal.operator-f 1e1d2<TO, FROM>), partial derivatives
are estimated at each vertex of a cell by central differencing in computational space,
and these derivatives are transformed into physical space by the metrics. Then the
differential operator quantities are generated at each cell vertex and, if necessary,
interpolated at interior locations.

In general, the second-order differential operator fields will produce more accurate
and reliable results than the first-order fields, but the second-order fields require more
work, since the central difference scheme demands field values froma larger stencil.

At present, second-order differential operator fields are not supported on unstruc-
tured meshes. Techniques exist for an analogue of the central difference scheme on
unstructured meshes {Bar91], and may be included in a future release. Note, however,
that second-order differential operator fields are supported on the tetrahedral meshes
derived from structured meshes by simplicial decomposition.

20.3 Creating differential operator fields

Differential operator fields are built on top of preexisting fields, which we refer to here
as base fields. As long as the base field has the proper node type (scalar or vector) to
which the differential operator applies, it may itself have been created in any number
of ways, i.e., the base field may be a core field, a derived field, or perhaps another
differential operator field.

The base field is provided to the differential operator field constructor as an FEL
pointer. In fact, the only other argument to the differential operator field-constructors
is an optional name, in the form of a character string. You choose between first- and
second-order numerical schemes by instantiating a differential operator field witha “1”
(first-order) or w2 (second—order) as the last character in the class name.

The differential operator fields are all templated (parameterized) by two types: the
type they return (“T0™) and the type of the base field they operate on (“FROM"). As
usual, there is a selection of predefined typedefs for the most common instantiations,
which allow you to bypass the template syntax in many cases. See the FEL Reference
Manual for a complete list of available typedefs.

Using a first-order gradient field as an example, the prototypical differential opera-
tor field declaration looks like this:

FEL_pointer< FEL_typed_£ ield<TO> > grad_£ ield =
new FEL_gradient_f jeld1<TO, FROM>

(FEL_pointer< FEL_typed_f ield<FROM> >);

The differential operator field is declared to operate on base field type FROM and
produce type TO- Therefore the constructor argument is a pointer to a field of type

116 CHAPTER 20. DIFFERENTIAL OPERATOR FIELDS

FROM, and the differential operator field itself, returned by new, is represented by a
pointer to a field of type TO.
Thus,

FEL_float_field_ptr temperature_field;

FEL_vector3 f_field ptr grad_of_temperature_f ield =
new FEL_gradient_field1<FEL_vector3f, float>
(temperature_field) ;

produces a vector field which at any location returns the gradient of tempera-
ture_field. Usinga typedef, the same declaration could be accomplished as:

FEL_float_field_ptr temperature_field;

FEL_vectorBf_field_ptr grad_of_temperature_field =
new FEL_gradient_of_float_field (temperature_field) H

Here are a few more annotated examples.

FEL_float_field_ptr temperature_field;
FEL_vector3f_field velocity_field;

// 1lst order ,
FEL_float:_field_ptr div_of_velocity_field =
new FEL_divergence_of_vééEo?fif_fieldl (velocity_ field);

// 2nd order
FEL_float_field_ptr div_of_velocity field =
new FEL_divergence_Qf_vector3 f_field2 (velocity_field) ;

// 2nd order, double brecision output

FEL_double_,field_ptr div_of_velocity_field =

new FEL_divergence_of_vector3 f_fie1d2<double, FEL_vector3fs>
(velocity_field) ; --

// curl of velocity = vorticity
FEL_vector3f_field_ptr vorticity field =
new FEL_curl_fie1d2<FEL__vector3f, FEL_vector3f>» (veloci ty_field);

// typedef-‘d version S S
FEL_vectorfif_fiéId_ptr \:/o__lj!;icity?f;erld =
new FEL_curl_of_véc':torB'fff'iéTdZ Wéliﬁiéity_f ield);

20.4. “CHAINING” DIFFERENTIAL OPERATOR FIELDS 117

20.4 “Chaining” differential operator fields

As mentioned previously, the base field of a differential operator field can itself be a
differential operator field. This allows operator “chaining” to create new operators. For
example, the Laplacian operator (V2, sometimes written A), in Cartesian coordinates,
operating on a scalar field f = f(z,y, z), is defined to be:
. *f 9f &f

Af=divgrad f=V-(Vf) = -('5?+5y_2+-8?
In light of this definition, one can declare a scalar Laplacian differential operator field
as follows:

FEL_float_field_ptr pfessure; // a derived field: de-
fined elsewhere ..

~ FEL_vector3f_field ptr grad_pressure =
new FEL_gradient_of_vector3f_fieldZ2(pressure);

FEL_float_field_ptr laplacian_pressure =
new FEL_divergence_of_vector3f_field2(grad_pressure);

Now laplacian.pressure is a scalar field which returns the second spatial
derivative, or “‘curvature”, of the pressure field. Note that pressure is itself a derived
field, whose values are only calculated on demand.

Chaining the differential operator fields is a powerful technique, and FEL supports
chains of arbitrary length; but one must be aware of the numerical limitations of grid-
ded data. Numerical differentiation by way of finite difference schemes magnifies noise
in the data, and is subject to truncation and roundoff error. These factors can quickly
overwhelm any meaningful signature in a dataset, due to the repeated numerical differ-
entiation entailed by a chain of differential operator fields.

The numerical problems associated with repeated differentiation are particularly
severe on unstructured grids. Unstructured grids support only first-order differential
operators, and these produce constant values across a given tetrahedron. Subsequent
differentiation at the nodes of the constant-valued tetrahedra invariably yields zero
derivatives. On structured grids, chained differential operator fields should be second-
order, to avoid the derivatives from “bottoming out™ prematurely.

In addition to these numerical issues, there are performance considerations asso-
ciated with chained differential operator fields. In the second-order central difference
scheme, evaluating the derivatives at a given vertex requires base field values from a
neighborhood of adjacent vertices. If the base field itself requires central difference
values, it will have to fetch values from yet a wider neighborhood, encompassing the
first. This “expanding neighborhood” (or “stencil™) around each vertex results in signif-
icant overhead for a field query. In addition, adjacent vertices have largely overlapping
“expanded neighborhoods”, so adjacent field queries result in a lot of duplicate work.
For these reasons, if performance is an issue, it may make sense to eagerly evaluate
(see Chapter 17) or at least cache (see Chapter 17) the results of a chained differential
operator field, particularly if it involves highly derived fields.

118 CHAPTER 20. DIFFERENTIAL OPERATOR FIELDS

Here is an example combining differential operator fields and derived fields.
The Laplacian operator, in Cartesian coordinates, operating on a vector field F =
F(z,y, z), is defined to be:

F O&*F OF

AF = grad divF —curl curlF = V(V-F) -V x (Vx F) = 5z + ay* 8z*

We can define a vector Laplacian operator field as follows:

FEL_vector3f_field_ptr v_field; // some vector field, de-
fined elsewhere

FEL_float_field_ptr div_field =
new FEL_divergence_of_vector3f_field2(v_£field);

FEL_vector3f_field_ptr grad_div_field =
new FEL_gradient_of_float_field2(div_£field);

FEL_vector3f_field ptr curl_field =
new FEL_curl_of_vector3f_field2(v_field);

FEL_vector3f_field_ptr curl_curl_field =
new FEL_curl_of_vector3f_field2(curl_field);

FEL_vector3f_field_ptr vector_laplacian_£field =
new FEL_difference_of_vector3f_field
{grad_div_field, curl_curl_field):

// if desired, convert into core field
vector_laplacian_field =
vector_laplacian_field->get_eager_£field();

Chapter 21

Instantiating Fields

The most prominent use of templates in FEL is for the node type of fields. The tem-
plating makes it possible for the user to construct fields with a new node type with a
minimal amount of code. FEL requires a few basic operations be supported for the
node type, so that the library can interpolate if necessary when queried about field val-
ues. The number of operators required is intentionally kept small to make it easier to
introduce custom types.

To demonstrate the minimal requirements of the node type, we present a few ex-
ample types below. Keep in mind that most built-in numerical types support all the
required operations, and then some.

21.1 Basic type requirements

The first example type is the “£00” type. A foo has basically the behavior of a spartan
scalar.

class foo {
float value;
public:
foo() { }
foo(float v) : value(v) { }
friend foo operator*(double d, const foo& f) {
return foo{(float) (d * f.value));
}
friend foo operator+{const foo& lhs, const foo& rhs) {
return foo(lhs.value + rhs.value);

}

// ostream operator not necessary, but handy

friend ostream& operator<<(ostream& strm, const foo £y {

return strm << f.value;

}
Y

119

120 CHAPTER 21. INSTANTIATING FIELDS

A “foo” must have a default constructor (so that one can allocate an array of them),
and we provide a constructor with a float argument so the example is not too trivial.
The * and + operators support multiplying a £oo by a scalar and adding two foo
objects together. In a program, the instantiation of a £oo field would look like:

main() {
// make a dummy mesh
FEL_mesh_ptr mesh = new FEL_regular_mesh(5, 7, 11);

// convenience typedefs for foo fields

typedef FEL_field<foo> FEL_foo_field;

typedef FEL_pointer<FEL_foo_field> FEL_foo_field_ptr;
typedef FEL_core_field<foo> FEL_core_foo_£field;

// make a foo field and iterate over it

foo* foo_data = new foo[mesh->card(0)];

// should £ill in the foo data buffer ...
FEL_foo_field_ptr foo_£field;

foo_field = new FEL_core_foo_field(mesh, foo_data);
FEL_vertex_cell_iter iter;

int res;

for (foo_field->begin(&iter); !iter.done(); ++iter) {(
foo £; :
res = foo_field->at_vertex_cell{*iter, &f);
assert{res == FEL_OK);

cout << "field value at " << *iter << " is " << f << endl;

}

The typedef statements are not essential, but they come in handy further down the
line, since the template syntax can get a bit tedious.

An example closer to what one might do in practice involves the construction of a
field where each node has a vector of 10 doubles: -

typedef FEL_vector<l0,double> FEL_vectorl0d;
typedef FEL_field<FEL_vectorl0d> FEL_vectorl0d_field;
typedef FEL_pointer<FEL_vectorl0d_field> FEL_vectorl0d_field_ptr;
typedef FEL_core_field<FEL_vectorl0d> FEL_core_vectorl0d_field;
FEL_vectorl0d* vectorlOd_data =
new FEL_vectorlOd[mesh->card(0)];
FEL_vectorl0d_field_ptr vectorlOd_field =
new FEL_core_vectorlOd_field(mesh, vectorlOd data),
for (vectorl0d_field->begin(&iter); !iter.done(); ++iter) {
FEL_vectorl0d v; _
res = vectorl0d_field- >at vertex cell(lter, &Vv) ;

assert(res == FEL_OK);
cout << "field value at " << *iter << " is " << v << endl;

21.2. DIFFERENTIAL OPERATOR FIELD REQUIREMENTS 121

}

The vector template is defined by FEL (see Chapter 3); there is no need to provide the
required math operators since they are already in the library.

21.2 Differential operator field requirements

If differential operator fields will be constructed with the new node type, then a few
more operators must be defined:

class bar {
float value;

public: ~
bar() { }
bar(float v) : value{v) { }

friend bar operator*(double d, const bar& b) {
return bar({(float) (d * b.value)});

}
friend bar operator+{const bar& lhs, const bar& rhs) {

return bar(lhs.value + rhs.value);

}
friend bar operator-(const bar& lhs, const bar& rhs) {

return bar(lhs.value - rhs.value);
}

// the following should not be necessary,

// but are needed for some SGI compilers, which can

// get confused at instantiation time

friend bar operator*(const bar& b, double d) {
return bar(b.value * d);

1

friend bar operator-{const bar& b) {
return bar({-b.value});

}

friend bool operator==(const bar& lhs, const bar& rhs)
return lhs.value == rhs.value;

}

};

Technically speaking, the only extra operator that should be required is bar
operator- (const bar&, const bark). Unfortunately, as noted in the ex-
ample, a few more operator definitions may be necessary if the compiler and linker
that one is working with get confused. Fortunately, the error messages indicating the
need for a particular operator are typically not too difficult to decipher, and the opera-
tors are fairly straight-forward to define.

122

CHAPTER 21. INSTANTIATING FIELDS

Currently FEL contains typedef statements for fields with the following node

types:

float

double

FEL_vector2f

FEL_vector3f

FEL_vector3d

FELmatrix33f
FEL._plot3d.density-momentum

FEL.plot3d.g

The last two types are aggregates defined for the solution vector data standard to
PLOT3D [WBPE92]. The “q” type contains the entire PLOT3D solution, the “den-
sity.momentum” field contains the subset of the variables necessary for velocity-
related derived fields. The math operators for both types simply define the same oper-
ators in turn for each component in the object. So, for instance, operator + with two
q objects returns a new object where the density, momentum, and energy components
are each the sum of the corresponding components in the two arguments. i

Chapter 22

File 1/O

To construct instances of most mesh and field classes in FEL, one provides, as argu-
ments, parameters and pointers to buffers containing data. Typical parameters include
specification of structured mesh dimensions, and data buffers typically include vertex
coordinates or solution data. For most scientists, mesh data and solution data are stored
in files of various formats. FEL provides file reader functions that extract the data from
files and, where appropriate, that load the data into main memory with a layout ap-
propriate for the class to be constructed. Using the reader functions, one can simply
specify the file name and optional flags describing the file format, and the appropriate
objects will be constructed. '

FEL has families of file reader functions for several major file formats. The most
extensive support in FEL is for the PLOT3D [WBPE92] format. A second family of
readers accepts paged PLOT3D files (see Chapter 23). Paged PLOT3D files contain
the data of standard PLOT3D files, but the data are reorganized into page-sized chunks
that can be read in on demand. FEL contains less extensive support for two more file
formats: FITS [FIT] and Vis5D [Vis]. Finally, the library provides a generic set of
reading functions that are independent of a particular file format. The idea is that an
application written in terms of the generic routines can work with a variety of file for-
mats. The generic routines currently support work with PLOT3D and paged PLOT3D
files, with limited support for the Vis5D format.

File readers are built using standard FEL operations. Thus, it is possible to write a
* reader for a new file type without having to modify FEL.

22.1 PLOTS3D file reader functions

The visualization application PLOT3D [WBPE92] defines a family of file formats for
storing meshes and fields. The FEL file reader functions handle files designated as “3D
(/WHOLE)” by PLOT3D. The PLOT3D “1D”, “2D”, and “3D (/PLANES)” formats
are not supported. This section contains descriptions for the three PLOT3D-related file
reader families. Most of this section describes the family of generic file readers, with
notes describing how the other two families differ. A later subsection shows how the

123

124 CHAPTER 22. FILE I/O

functions correspond among the three families.

Most applications should use the generic functions so that they work with both
types of files. While the generic functions have some amount of overhead over the
specific functions, the overhead is quite minimal and is outweighed by allowing your
program to work with multiple file formats. Future versions of FEL may enhance the
generic file reader functions which would let your application read those files with little
or no effort.

22.1.1 The PLOT3D flags

The FEL PLOT3D flags allow the user to specify the type of a file. They spec-
ify the type of the file (PLOT3D or paged file) as well as the particular variation
of the PLOT3D file format. The generic file readers use the file type flags (ei-
ther FEL_PLOT3D.3D_WHOLE or FEL_PAGED.PLOT3D.3D_WHOLE) to determine
the file-type-specific routine that should be called to do the actual work. The variation
flags tell the standard PLOT3D routines which PLOT3D variation the file contains.

The paged PLOT3D routines ignore the variation flags because the paged files are self-
identifying. If you call a standard-PLOT3D- or paged-PLOT3D-specific reader routine
directly, the flags argument must correspond t to the file type that the routine handles.

Several flags can be expressed simultaneously using the C “|” bitwise-or op-
erator. For example, “FEL_PLOT3D_3D_WHOLE | FEL.PLOT3D.MULTIZONE |
FEL.PLOT3D-IBLANK" specifies a PLOT3D multi-zone file which includes IBLANK
information.

The PLOT3D readers recognize the followmg ﬂags
FEL_PLOT3D. 3D.WHOLE for all PLOT3D (non pagcd) files
FEL-PAGED.PLOT3D.3DWHOLE for PLOT3D paged files

FEL_PLOT3D. IBLANK file contains IBLANK mfonnatlon

FEL. PLOTBDMU’LTIZONE ﬁle has multlple zon,e; L

FEL PLOTBD_FORTRAN GNFORMATTED bmary thh FORTRAN control words
FEL_PLOT3D_FORTRAN_FORMATTED PLOT3D ASCII format
FEL_PLOT3D_FUNCTION file is a function file

FEL.PLOT3D_LITTLE.ENDIAN bytes are in little endian order

22.1.2 Automatic mesh type deduction

FEL provides an automatic format deducing function, FEL_deduce.mesh_type({),
which makes it easier for the user to read meshes without having to remember the
particular variation of the file format at hand. The deducer will determine the type of
the file (standard PLOT3D or paged), and the file’s PLOT3D variation. The deducer

22.1. PLOT3D FILE READER FUNCTIONS 125

allows one to pretend that all PLOT3D files are self-describing. The deducer takes a
character string file name and returns an unsigned integer representing the flags, or 0
if it could not successfully deduce the mesh type. The deducer essentially works by
hypothesizing that the file is a particular format and examining the file to see whether
the file is consistent with that format. With paged PLOT3D files, the deducer just
examines the first few bytes of the file to see if the file has a valid paged PLOT3D file
header.

Deducing a standard PLOT3D file takes more work. The PLOT3D deducer must
hypothesize a PLOT3D file variation, interpret the first words in the file as if in the
hypothetical variation, and then compute the size of the file in bytes implied by the
header words. If the number of bytes implied matches the actual number of bytes in the
file, then the deducer returns the specific variation. Otherwise, the deducer continues
to the next variation hypothesis. The technique used by the deducer is not fool-proof.
For example, if for some reason the file has extra bytes appended to it, then the implied
count will not match the actual, and the deducer will fail.

22.1.3 Reading mesh files

The function FEL_read mesh () is the function for reading meshes. The function
takes one required argument, the character string mesh file name, and returns an
FEL _mesh subclass. If the reader encounters an error, then it returns NULL. Imme-
diately following the file name argument is an optional argument with the format flags
for the given file. By default the reader calls the deducer function to compute the flags.
The third argument allows reading a specific zone from a multi-zone data set. The
default value of -1 specifies that every zone should be read in; other values spec1fy a
particular zone to be read. The function’s declaration is:

FEL_mesh_ptr FEL_read_mesh(char*, unsigned = 0,
int = -1);

22.14 Getting information about structured mesh files

Three functions read part of a structured mesh file and return information about it.
These functions abort if they are called on an unstructured mesh file. All three functions
return a status code of FEL_OK on success and FEL_FAILED on failure. The first
argument for the functions specifies the name of the file. The second argument specifies
the type of the file and must be non-zero (use the deducer if you don’t know the type).

The same information can be retrieved from a mesh once you have read it, using
get.n_zones and get_structured.dimensions. If you do not need the infor-
mation before reading the mesh, it is more efficient to read the entire mesh and then
retrieve the information from it.

The functions are:

int FEL_read_mesh_dimensions(char*, unsigned, int*,
FEL_vector3i**);
int FEL_read_mesh_n_zones(char*, unsigned, int*);

126 CHAPTER 22. FILEI/O

int FEL_read_mesh_zone_dimensions(char*, unsigned, int,
FEL_vector3i*);

The first function, FEL_read mesh_dimensions, returns the number of zones
and the dimensions of each zone. The dimensions are returned in a dynamically-
allocated array. This array must be deallocated using delete(] after you have fin-
ished using it. The array is returned by setting the FEL_vector3i* that is pointed to
by the third argument.

The second function, FEL_read_mesh_n.zones, returns the number of zones
by setting the integer pointed to by the third argument. The last function,
FEL_read_mesh.zone.dimensions, returns the dimensions of the zone specified
by the third argument by modifying the FEL.vector31i pointed to by the last argu-
ment. These last two functions call FEL_read_ mesh_dimensions and return part
of what it returns, so it is more efficient to call that function if you need information
about all the zones.

22.1.5 Reading solution files

FEL provides a set of solution reader functions, all with the prefix FEL.read.,
e.g., FEL_read.density. Each solution reader function take, as a first argu-
ment, the mesh upon which the solution is based and a character string file name
as the second argument. The third required argument is the set of flags spec-
ifying the specific file format. The flags are the same as those used for the
mesh reading functions, though some flags (specifically FEL.PLOT3D.IBLANK and
FEL_PLOT3D_UNSTRUCTURED) are irrelevant to solution files and are ignored. If
the flags include FEL_PAGED_PLOT3D_3D.WHOLE, i.., if one will be reading from a
paged file, then the remaining flags are not necessary, as paged files are self describing.
The data in the paged file overrides options spelled out by the flags. Immediately fol-
lowing the three required arguments to the solution reader routines there is an optional
argument specifying a specific zone to read. By default the data for all the zones of a
multi-zone file are read.

Unlike the mesh case, the library does not provide a format deducing function for
solution files. Typically, one can use the flags returned by FEL.deduce mesh_type
as an argument to both the mesh and solution reading functions, since both are usually
the same PLOT3D variation, e.g., “FORTRAN unformatted”. Thus the lack of a so-
lution format deducer is typically not an inconvenience. In the cases where the mesh
and solution are not in the same format, one can still use the mesh deducer result for
reading the mesh, but the flags for the solution reader must be determined by the user
and provided manually.

The typical usage of the deducer and reader functions is:

unsigned flags;
FEL_mesh_ptr mesh;
FEL_float_field_ptr density_field;

flags = FEL_deduce_mesh_type({mesh_file_name);

22.1. PLOT3DFILE READER FUNCTIONS 127

mesh = FEL_read__mesh(mesh_file__name, flags):
density_field = FEL__read_density(mesh, soln_file_name, flags);

Code written for actual use should check that the return values for each of the calls is
not 0 or NULL. The following solution reader functions are provided:

FEL_float_field_ptr FEL_read_density(FEL_mesh_ptr,
const char®, unsigned, int = -1):
FEL_float_field_ptr FEL_read_momentuan(FEL_mesh_ptr,
_const char*, unsigned, int = -1);
FEL_float_field_ptr FEL_read_momentum_y(FEL_mesh_ptr,
const char*, unsigned, int = -1): '
FEL_float_field_ptr FEL_read_momentum_z(FEL_mesh_ptr,
const char*, unsigned, int = -1);
FEL_vectorBf_field_ptr FEL_réad_momentum(FEL_mesh_ptr,
const char™, unsigned, int = -1);
FEL_float_field_ptr FEL_read_energy(FEL_mesh_ptr,
const char*, unsigned, int = -1);
FEL_plot3d_q_field_ptr:FEL_read_q(FEL_mesh_ptr,
const char®, unsigned, int = -1);
‘FEL_vectorBf_field_ptr FEL_read_velocity(FEL_mesh_ptr,
const char™, unsigned, int = -1)
FEL_ploth_density_momentum_field_ptr
FEL_read_density_momentum(FEL_mesh_ptr, const char*,
- unsigned, int = -1);

22.1.6 Reading function files

FEL provides two routines for reading PLOT3D “function” files:
FEL.read-f loat.function and FEL_read.vector3 f_function. The
first two arguments {0 the routines, the mesh and file name, are the same as for the
solution readers. The last two arguments are also the same: the second to last argument
specifies the file format flags; the final argument, which is optional, specifies a
particular zone to read. The function file reader routines have an extra, third argument,
specifying how many scalar variables to skip over in order to get to the desired values.
For example, given a function file having a zone containing a vector (3 floats) followed
by a scalar, one would use a value of 3 for the third argument in order to read the
scalar variable. The paging code does ot currently support function files, so the paged
versions of these functions do not exist. The functions are:

FE‘.L_float:_field _ptr FEL_read_float_function(FEL_mesh _ptr,

char*, int, upslgned, int = -1):
FEL__vectorBE_fiéId;ptr FEL_read_vectorBf__function(FEL__mesh _ptr,

char*, int, unsigned, int = -1):

2.2 PLOT3D and paged fe readers

128 CHAPTER 22. FILE 110

22.1.7 Reading individual zones from multi-zone files

Zone meshes, the reading routines allow one fo provide a zone argument, even when
the mesh is single-zone. In the single-zone case, the argument value must be Q. This
allowance makes jt possible to write code such as:

unsigned flags = FEL_deduce_mesh_type(mesh_file),-
int n_zones;
FEL_read_mesh;n_zones(mesh_file, flags, &n_zones);

for (int zZone = 0; zone < n_zones; Zone++) {

FEL_mesh‘ptr m = FEL_read_mesh(mesh_file, flags, zone) ;

FEL_float_field‘ptr £ =
FEL_read_energy(m, soln_file, flags, zZone) ;

// ... do brocessing with field f
}

The excerpt above wil] work with both single- and multi-zone files. Of course,
code for actual use should check the return values from the reader functions to ensure
success.

routines all check a public global variable: FEL-reader.verbose, which can be set
to true by the user. Whep this flag is true the readers provide more information about
what they are doing. : :

ib
bl

il [

129

22.2. PLOT3D AND PAGED FILE READERS

-s90uopuodsaliod Jopedl 9|y (I€LO1d :1°7¢ 9198l

(pawdwaduri jou)

uoT3dUN3-jgIo03dan-pearpglold-1ad

uOTIOUNI I I0IOAPLIT TS

(pawawajdurr 1ou)

uoT3dunjy-jeoTI pearpglordad

uoT3dUN3-3IPOTI PesI-Tdd

umjuawour Al rsusp-pabedpeaxpgiord 1dd

umjuswour A3 1suap pearpgioTd-1dd

um3jusuow A3 1susp peax-1dd

AytooTan-pabed-peaxrpgirord 1ad

Ka1ooran-pesrpelroTd1dd

Katooraa-peaa1dad

bpabed-peaxpgioTd Tad

b-peaxrpg¢iordad

bpesxad

Kbasua-pabed-peaxpglrofd1d4d

KABraus~pearpgiordIad

Abasus-peax Iad

umjusauour pabed-pearpglioTd1ad

um3juswourpeaxpgloTd-1dd

um3juswour peax - Tdd

zumjuawourpsbHed-pesr-pgio1d 134

zum3juswourpearpglord-Iad

Z-umjuswowpeaI-1d4d

KAumjuswourpabed-pearpgioid1dd

Aumjuswouwrpeaxrpglotd-aad

%uguﬂmﬁosnﬂmwhlth

x-umjuauourpabed-peaxpgirord1ad

xumjuswourpeaxpgloTd-1dd

Xumjuswourpeax Tidd

A31suap pabedpesxpglord Tdd

A3tsusppearpgiord-1ad

AjTsusppeaxidd

(uonouny ouauad asn)

(uonounj >udua3 asn)

sauozTu ysaawpeaxTdd

(uonouny 519udT Isn)

(uomndunj 5u3uag asn)

SUOTSUSWTP 9UOZ YSaWwpeax 1dd

suotsuawutp yssurpsbed-pearpglord 134

suoTsuswip-yssurpesxrpglioididd

SUOTSUaWTP-YSauUrpeaI-1ad

ysaurpabed-pearpgiotd1ad

ysaurpeaxpglotd-1ad

ysawpear - Iad

adA3-ysaurpsbed-sonpap-pgirotd1dad

adA3-ysaursonpsppglroTd1ad

adA3-ysawaonpap 1dd

uoypuny 4eLO1d paded

uonoung AsLO1d |

uonaunj AU |

130 CHAPTER 22. FILEI/O

22.3 The FITS file reader

FEL provides a simple reader for FITS files. The reader handles data for 2- or 3-
dimensional regular meshes, with a single float value at each node. The reader takes as
its first argument the character string specifying the file name. The next two arguments
each are a pointer to an integer. FITS file headers consist of a sequence of tags, each
with a corresponding value. Some users have extended their use of the FITS format
by defining new, non-standard tags. In particular, the tags “XPOS” or “YPOS”, each
accompanied by an integer, are used by McDonnell-Douglas to signify the lower corner
of a subimage (where images are represented by a 2-D mesh). The FEL FITS file reader
function recognizes the “XPOS” and “YPOS" tags, returning the corresponding values
in the integers pointed to by the second and third arguments of the reader call. By
default “XPOS” and “YPOS™ are set to 0.

In general, the FITS reader function does not write any output to the terminal.
In some cases, it may be handy to request more output, for example, when trying to
determine why the reader cannot successfully read a particular file. The FITS reader
routine checks a public global variable, FEL_fits_reader_verbose, which can be
set to true by the user. When this flag is true, the reader provides more information
about what it is reading, including displaying the tags that it encounters in the file.

22.4 The Vis5D file reader

FEL provides a simple reader for files in the VISSD format. There are two routines
available to the user: FEL.vis5d.get_scalar and FEL_vis5d.get_vector.
The scalar routine returns a float field, the vector routine returns a FEL_vector3f
field. Both routines take a mesh as a first argument and a character string file name as
a second argument. The scalar field reader takes a third argument: a character string
providing the name of the variable to read. Finally, both routines take an integer final
argument specifying the time step to retrieve when working with time series data.

Chapter 23

Paged Meshes and Fields

23.1 Introduction

Paged meshes and fields are similar to standard FEL meshes and core fields, but they
use much less memory. Instead of keeping all of the data in memory, they bring in the
portions that are used. Data are placed into a pool of memory; the size of the pool can
be specified by the user. When the pool is full, some data that have not been recently
used are replaced with the new data.

A paged mesh or field can be much faster than the corresponding in-memory ver-
sion if your system does not have enough main memory to hold all of the data. While
you can rely on the operating system’s virtual memory to bring in the data when you
are using in-core meshes and fields, the paged versions use memory more efficiently
and may be able to keep what is currently needed in memory while the operating sys-
tem cannot. A program will run much faster if its data can be kept in memory. Even if
you have enough memory, a paged mesh or field can be faster if you only need to use a
fraction of the data since only that fraction is read from disk. However, a paged mesh
or field can be slower if you have sufficient memory and repeatedly use all or nearly
all of the data. This happens because the data are read in smaller amounts compared to
when the entire file is read at once, and because, for the same amount of data, reading
data in smaller amounts takes longer than reading it all at once. Also, accessing the
data is a bit slower with the paged routines because they do some additional checks
and calculations. More information about the advantages and disadvantages of paged
files and out-of-core visualization in general can be found in [CE97].

From a coding standpoint, the use of a paged mesh or field is very similar to using
the corresponding in-core objects. The same operations are supported, except that the
names of some setup calls are different. :

As of this writing, only PLOT3D structured grid and solution files can be paged.
Support for function files and unstructured grids may be available in a future release.
Also, the current paging code is not thread-safe, so paged files should not be used in
multithreaded programs. This should be corrected in the next release.

131

132 CHAPTER 23. PAGED MESHES AND FIELDS

23.2 How paged files work

The technique that paged files use to bring data from disk as it is used is similar to
how virtual memory is implemented in computer systems, but using software instead
of hardware. Like virtual memory systems, the paging code reads fixed-sized blocks
of data, called pages of data.

One reason that paged meshes and fields use memory more efficiently than the
operating system’s virtual memory system is that they can select a different page size.
The paging code uses pages of 2 kilobytes, while current workstations use page sizes
of 4, 8, or 16 kilobytes. Smaller pages use memory more efficiently than larger pages
because there are smaller amounts of unreferenced data surrounding the referenced
data that must still be read into memory.

The second reason for paged meshes’ and fields” more efficient memory usage is
that they reorganize the data in the file, which places different data on each page. For
structured grids, an 8x8x8 cube of data from a single zone is placed in a page. The
original PLOT3D files would place a plane of data on a page. Again, the reason that
this file organization uses memory more efficiently is that placing cubes of data on each
page has smaller amounts of unreferenced data surrounding the referenced data. For
most 3D traversals of the data, placing 8x8x8 cubes around the referenced data covers
a smaller portion of the overall data compared to placing (for example) 32x64 planes of
data around the referenced data. In practice, this reorganization cuts the memory usage
in half compared to PLOT3D when computing streamlines. If memory is tight, using
half the memory can translate into larger factors of speed improvement. One drawback
from reorganizing the data is that the files must be converted to a new format. The next

section describes how to convert files.

When you start to use a file, it is opened, and data structures are set up that have an
entry for each page in the file; each entry indicates that the page has not been loaded
into memory. When you access some data (e.g., by using an at.cell call), the pages
where the data are found are computed and checked to see if they are present. If they
are not present (which would be true if the file was just opened), the pages are read.
Then, the values are retrieved from the pages and returned.

Pages read from disk are placed in memory allocated from a pool of pages. There
is a single memory pool, which means that it is shared among all of the open paged
files. If all pages are in use when a new page is needed, a page that has not been
recently used is reused. The size of the pool is user-configurable (see Section 23.5
below). Preliminary estimates indicate that you can visualize a dataset interactively
when the pool will hold 20% of the dataset’s grid files and 5% of the solution files.
These numbers depend on how the data are used and thus will vary considerably.

There is some memory overhead associated with paged files. When you start using
a file, the paging code creates data structures that use memory equal to about 0.3%
of the file size. This can be significant: a 10 gigabyte dataset would use about 30
megabytes of memory. This memory is allocated separately from the memory pool
used to hold file data.

23.3. CONVERTING PLOT3D FILES TO PAGED FILES _ 133

23.3 Converting PLOT3D files to paged files

As mentioned above, you need to convert your PLOT3D files to the paged file format.
The p3dtopaged program will convert one file to the new format. This program can
be found in the FEL source directory. o

For most files, the program can deduce the type of input file. In that case, the usage
is: :

p3dtopaged input-file output-file

The program cannot figure out some file types, especially FORTRAN unformatted
files with more than 5 solution variables. With these files the type must be specified on
the command line using flags. The flags are:

~g indicates that the input is a grid file with no IBLANKS
-1i indicates that the input is a grid file with IBLANKS
-s indicates that the input is a solution file

-1 (a one) indicates that the input file has one zone

-m indicates that the input file has multiple zones

-b indicates that the input is a binary file

-f indicates that the input is a FORTRAN unformatted file

If the program cannot deduce the type of the file, you will have to specify three of
the above options: one from g, i, or s; 1 orm; and b or £. For example, p3dtopaged
-imb would specify that the input file is a multi-zone, binary, PLOT3D grid file that
includes IBLANKS.

Paged files can be converted to the PLOT3D format with the pagedtop3d pro-
gram. It only outputs binary files; FORTRAN unformatted is not supported. If your
original input file was a FORTRAN unformatted solution file with seven parameters
per node, when you convert the paged file to a PLOT3D file only the first five param-
eters will be in the file. This happens because paged files contain only the first five
parameters. If the original PLOT3D file was a binary file, converting the file to a paged
file and then back to a PLOT3D file will give you an identical file.

23.4 Using paged meshes and fields

A program uses paged meshes and fields in nearly the same way as it uses in-core
meshes and fields. The main difference is how these objects are created. In-core meshes
and fields can be created by reading a file or by giving a block of data to a constructor.
Paged meshes and fields should only be created by using functions similar to the ones
used to read a file for an in-core mesh or field.

134 CHAPTER 23. PAGED MESHES AND FIELDS

For example, the FEL_plot3d_read mesh function will read a PLOT3D file
into memory and return a FEL mesh_ptr. The FEL.plot3d.read-pagedmesh
function will open the paged-format file and initialize the paging data structures, and
then return a FEL_mesh_ptr. Both functions take the same arguments. The only
difference is that the FEL_plot3d_read._paged.mesh function ignores the flags
argument. See Chapter 22 for more details about these functions.

Your program can also use file-reading functions that work for both PLOT3D
files and paged files. Using these generic functions is encouraged since your pro-
gram will then work with both in-core and paged meshes and fields. These func-
tions will first look at the flags argument to determine the type of the file. If the
flags argument specifies a file type (i.e., it is non-zero), that type is used. Other-
wise, the functions look at the file itself to determine the file type. If the file is a
PLOT3D file, these functions will read the file and return an in-core mesh or field;
if it is a paged file, they will open the file and return a paged mesh or field. In gen-
eral, if the in-core function is FEL_plot3d.read xxx, the paged function will be
named FEL_plot3d.read_paged.xxx, and the generic function will be named
FEL_read_xxx. Table 22.1 shows the correspondences between the generic and
paged-file functions.

Another minor difference between in-core and paged meshes and fields is how the
compute_bounding box and compute min_max functions are implemented. In-
core meshes and fields must compute the results at run time. The paged versions of
these functions instead use values computed when the file was converted to a paged
file and thus are much faster. Because of this, you should use the FEL functions to
compute these values instead of writing your own.

23.5 Controllmg memory usage : e

If you are concemcd about the performance of your program, you W1ll probably want
to avoid having it use more memory than is installed on the system where it is running.
You can control how the paging code uses memory by two methods. The first method
lets you control the total amount of memory used. The second method allows you to
specify which meshes or fields are more important and should be kept in memory in
preference to other meshes or fields.

23.5.1 Pool size

You can control the amount of memory used by changing the size of the memory pool.
The paging code uses this pool to hold pages from paged mesh and field files that
are brought into memory. By default, the maximum pool size is 50% of the system’s
memory. On most Unix systems, the “system memory size” is the value returned from

the getrlimit system call for the maximum resident set size. Many shells (sh, csh,--
etc.) allow this value to be changed with the 1imit command using the men '
option. For example, 1limit memoryuse 100m would set the overall maximum
memory usage to 100 megabytes and the default paging pool size to 50 megabytes.

23.5. CONTROLLING MEMORY USAGE 135

On Solaris systems, the *system memory size” is determined using a different call that
returns the actual physical memory size.

The maximum size of the pool can also be changed with two procedure calls. The
first, FEL.set_paging.memory megabytes, sets the size of the pool directly.
The second call, FEL_set_paging.memory_fraction, changes the fraction of
the system’s memory that is used; the fraction should range from O to 1. Both calls
take a single £ 1oat argument. The size of the pool can only be changed before open-
ing the first paged file. Calls to these two functions after opening a file have no effect.
The two calls are defined as follows: o
extern void FEL_set_paging_memory_megabytes(float) ;
extern void FEL_se’c_paging_memory__fraction (float); -

Memory will only be allocated to the pool as data are read from disk. This means
that, if the maximum pool size is much larger than the files that are used, the pool will
grow to at most the size of the files. (The pool can be somewhat larger than the total file
sizes because partially-filled 8x8x8 cubes of data take up a full page when in memory
but take only a partial page when on disk.)

One difference between the paged and standard file reader calls is
that the same data are loaded in memory only once with the paged
calls. For example, if you call FEL_read paged.plot3ddensity
and FEL_read.paged.plot3d.density momentum for the same
file and use data from both, the density values will only be read once.
But, if you use the non-paged calls, FEL.read.plot3d.density and
FEL_read plot3d.density.momentum, the density values will be read
twice and stored twice.

23.5.2 Page priority hints

The second memory control method allows a program to control which file’s pages are
retained in the memory pool. When the memory pool is full and more data are needed
from a file, a page that currently contains data is_selected and reused. Each mesh or
field has a priority that determines the length of time before its pages can be reused.
Increasing or decreasing the priority gives the paging code a hint on which data are
important or unimportant so that pages containing less important data can be reused
first. These hints have not yet been used in an application, so they should be regarded
as experimental.)

For example, priority hints could be used with an unsteady dataset in an interactive
application that has a concept of the current simulation time. In such an application,
only the two timesteps that bracket the current simulation time are used. If all the
timesteps but the current ones are set to low priority, then they will always be the ones
reused.

The following priorities can be used:

e FEL_LOW_PAGE_PRIORITY allows the mesh’s or field’s pages to be deallo-
cated and reused immediately.

136 CHAPTER 23. PAGED MESHES AND FIELDS

e FEL.STANDARD.PAGE_PRIORITY allows the mesh’s or field’s pages to be
deallocated after they have not been used for a while. This is the default pri-

ority.

e FEL.HIGH.PAGE_PRIORITY allows the mesh or field’s pages to be deallocated
after they have not been used for a longer time than standard-priority pages.

Priorities are set by using the set member function with one of the following

"keywords:

e FEL_FIELD.PAGE_PRIORITY changes the priority for both the field (solution)
data and the mesh data when invoked on a field, and changes the priority of the
mesh data when invoked on a mesh.

e FEL_MESH_PAGE.PRIORITY changes the priority of the mesh (if mvoked ona
field, changes priority of the field’s mesh).

e FEL_SOLUTION_PAGE_PRIORITY changes the priority for the field data when
invoked on a field, and has no effect when invoked on a mesh.

The current interface allows you to set the priority for an entire field, an entire

mesh, or both, or for an individual zone in a mesh. You cannot set the priority for
individual zones of the data for a multi-zone field. Some examples are below:

void priority_example()

{

// code assumes "grid" and "solution" files are

// multi-zoned

unsigned int flags = FEL_deduce_mesh_type("mesh");

FEL_mesh_ptr mesh = FEL_read_mesh("mesh", flags);

FEL_float_field_ptr field = FEL_read_density(mesh,
"solution", flags):;

// change priority of mesh for all zones

‘mesh->set (FEL,_MESH_PAGE_PRIORITY, FEL_LOW_PAGE_PRIORITY) ;

// change priority of mesh for zone 1

mesh->get_zone(l)->set (FEL_MESH_PAGE_PRIORITY,
FEL_LOW_PAGE_PRIORITY) ;

// change priority of mesh for all zones

field->set {(FEL_MESH_PAGE_PRIORITY, FEL_LOW_PAGE_PRIORITY) ;

// change priority of mesh for zone 1

field->get_mesh()->get_zone(l)->set (FEL_MESH_PAGE_PRIORITY,
FEL_LOW_PAGE_PRIORITY);

// change priority of field data for all zones

field->set (FEL_SOLUTION_PAGE_PRIORITY, FEL_LOW_PAGE_PRIORITY);

// change priority of mesh and field data for all zones

field->set (FEL_FIELD_PAGE_PRIORITY, FEL_LOW_PAGE_PRIORITY) ;

Chapter 24

The PLOT3D Field Manager

The PLOT3D field manager is a class hierarchy which can help create and manage
fields based on PLOT3D data files. Once you create a field manager object, you can
ask it to create any of over fifty predefined derived fields by name, and it will take care
of any necessary file reading and derived field construction, returning a field ready for
use. A function which receives a pointer to a field manager object essentially has been
sent an entire collection of fields.

24.1 Constructing an FEL_plot3d_field

The base class of the field manager hierarchy is FEL.plot3d.field. This class
is an abstract class. Three derived classes create instances of FEL plot3d.field
for three types of fields: steady fields, time-varying fields, and PLOT3D Q
fields. Most applications should assign instances of the derived classes to a
FEL.plot3d_field ptr so that their code is independent of the actual field man-

ager type.

24.1.1 Constructing an FEL_steady plot3d.field

Two constructors are available for constructing an FEL_steady.plot3d.field:

FEL_steady_plot3d_field{char* mesh_file, char* soln_file,
unsigned flags = 0);

FEL_steady_plot3d_field(FEL_mesh_ptr mesh, char* soln_file,
unsigned flags = 0);

In the first constructor, you supply the names of your PLOT3D mesh file (mesh_file)
and solution file (soln_file), and, optionally, flags describing your file formats. In
the second constructor, you supply a pointer to a preexisting mesh (mesh) instead of
the name of a mesh file. '

137

138 CHAPTER 24. THE PLOT3D FIELD MANAGER

24.1.2 Constructing a time-varying field manager

Time-varying field manager objects create time-varying fields in response to requests
for derived fields. Since manager objects create time-varying fields, the arguments
to the two constructors for a time-varying field manager are nearly the same as the
constructors for time-varying fields. Chapter 25 describes time-varying fields and the
common arguments.

Three of the field manager constructor’s arguments are different from the time-
varying field’s constructor. The first argument can be a string specifying the mesh file
instead of a mesh object. The third argument, the callback function, is different in that
it does not return a field object. Instead, it fills in the name of the solution file and
returns a value indicating success or failure. Finally, the field manager has a seventh
argument giving the file flags for the solution files.

The definitions for the constructors are:

const int FEL_plot3d_filename_len = 1024;
typedef int (*FEL_plot3d_filename_callback)

{int, void*, char[FEL_plot3d_filename_lenl};

FEL_fixed_interval_time_series_plot3d_field(
char* mesh_file, - -+ - = S
int num_time_steps,
FEL_plot3d_filename_callback cb,
void* user_data,
float physical_time0, - -~
float physical_timel, o
unsigned flags = 0);

FEL_fixed_interval_time_series_plot3d_field(
FEL_mesh_ptr mesh,
int num_time_steps,
FEL_plot3d_filename_callback cb,
void* user_data,
float physical_timeO,
float physical_timel,
unsigned flags = 0);

You can specify time-varying meshes using the second constructor and passing a
time-varying mesh as the first argument (see Chapter 26).

An example of a time-varying manager constructor is shown below. The exam-
ple code reads a steady mesh file called mesh and 20 solution files named soln00,
soln01, ..., soln19. The physical time values for the timesteps start at 0 and in-
crease by 1 for each timestep. The code also has an example of how to use the user-
data argument: the first four letters of the filename are passed to the callback function

using that argument.

24.2. CREATING PRIMITIVE AND DERIVED PLOT3D FIELDS 139

int soln_callback{int timestep, void* userdata,
char filename[FEL_fixed_interval_time_series_plot3d_field::
FEL_plot3d_filename_len])

{
sprintf (filename, "%s%02d4d", (char*) userdata,
timestep);
return 1;
}

FEL_plot3d_field_ptr make_time_varying_manager ()
{
unsigned flags = FEL_deduce_mesh_type("mesh");
FEL_plot3d_field_ptr fp = new
FEL_fixed_interval_time_series_plot3d_field(" mesh" 20,
soln_callback, "soln", 0, 1, flags);
return £p; '
}

24.1.3 Constructing an FEL_plot3d.q_field

The third type of field manager constructor allows using fields that are not handled
by the first two cases, such as transformed fields or multizoned fields with mixed
steady and unsteady zones. This constructor allows an application to create an arbi-
trary PLOT3D Q field and then to use the field manager to create derived fields from
it. The constructor simply takes the Q field as its only argument:

FEL_q plot3d_field(FEL_plot3d_qg field ptr g_field);

This class name can unfortunately be easily confused with another
type name, FEL.plot3d.g.field. The latter type is a synonym for
FEL_typed_field<FEL.plot3d.g>.

24.2 Creating primitive and derived PLOT3D fields

Once you have a properly initialized FEL_plot3d.field, creating the PLOT3D
primitive and derived fields is straightforward. Access to the primitive PLOT3D fields
is provided by five methods:

FEL_float_field_ptr get_density_field();
FEL_vector3f_field_ptr get_momentum_field();
FEL_float_field ptr get_energy field():;

FEL_plot3d_density_momentum_field ptr
get_density_momentum_field() ;
FEL_plot3d_q _field_ptr get_qg field();

140 CHAPTER 24. THE PLOT3D FIELD MANAGER

The first three methods return fields representing the momentum variable and two ther-
modynamic state variables which make up the PLOT3D solution output. The latter
two methods return “conglomerate” fields, the last one containing the entire PLOT3D

solution vector.

PLOT3D derived fields are obtained via two functions:

FEL_float_field_ptr make_float_field(FEL_float_field enum);

FEL_vector3f_field_ptr

make_vector3f_field(FEL_vector3f_field_enum);

These functions take a single argument indicating the desired field and they return a
pointer to a field of the appropriate type. The enums representing the supported fields
are shown in Table 24.1. The identity of the fields produced by the various enums
should be evident from their names; precise definitions can be found in [WBPE92] or
in the FEL code itself (in the file FEL_plot3dmap-functions.C). The enums
correspond exactly to the original PLOT3D “function numbers” ((WBPE92]), so you
can use those directly if you prefer. If you need a derived field which isn’t predefined,
you can always create one using some combination of the primitive and predefined

fields — see Chapter 19.

FEL.density = 100

FEL.stagnaticn densicy = 102
FEL.pressure = 110

FEL.stagnation pressure = 112
FEL.pressure.coefficient = 114
FELpitot_pressure = 116
FEL.dynamic_pressure = 118
FELnormalized. temperature = 121
FELnormalized stagnation.temperature = 123
FELnormalized.enthalpy = 131
FELnormalized.stagnation enthalpy = 133
FELnormalized.internal energy = 141
FEL.normalized.stagnation energy = 143
FELnormalized kinetic.energy = 145
FEL.v.velocity = 151
FELvelocitymagnitude = 153
FEL.speed.of.sound = 155
FEL.divergence.of velocity = 158
FEL.y.momentum = 161

FEL_energy = 163

FEL.entropy-sl = 171
FEL.y.component.of.vorticity = 181
FEL.vorticitymagnitude = 183
FEL.velocity.cross.vorticitymagnitude = 185
FEL.pressure.gradientmagnitude = 192
FEL_.shock = 400

FEL.normalized.density = 101
FEL.normalized.stagnation.density = 103
FELnormalized pressure = 111
FELnormalized.stagnation.pressure = 113
FEL.stagnationpressure.coefficient = 115
FEL.pitot_pressure.ratio = 117
FEL.temperature = 120

FEL_stagnation. temperature = 122
FEL.enthalpy = 130
FEL.stagnation.enthalpy = 132
FEL.internal.energy = 140
FEL.stagnation.energy = 142
FELkinetic.energy = 144

FEL.u.velocity = 150

FELw._velocity = 152

FELmachnumber = 154

FEL.cross flow velocity = 156
FELxmmomentum = 160
FEL.zmomentum = 162
FEL.entropy = 170
FELx_component.of.vorticity
FEL.z.component.of.vorticity
FELswirl = 184
FELhelicity = 186
FEL.density gradient.magnitude = 193
FEL.filtered.shock = 401

180
182

FEL.velocity 200

FEL_momentum 202
FEL.velocity.cross.vorticity = 204
FEL.density_gradient = 211

FEL.vorticity = 201
FEL.perturbation.velocity = 203
FEL.pressuregradient = 210

Table 24.1: Scalar (above the line) and vector (below the line) derived fields predefined
in PLOT3D [WBPE92] and supported by FEL_plot3d.field. The FEL enums are
given, along with the PLOT3D “function number”.

24.3. HOW THE FIELD MANAGER WORKS 141

All the derived fields created by the FEL.plot3d.field are of type
FELmap.then_interpolate derived_field* (). Any required differential
operator fields are second-order if the FEL_plot3d.-field's mesh is structured, and
first-order if the mesh is unstructured. Future versions of the FEL_plot3d.field
manager may permit the client to specify the types of derived fields and differential
operator fields to be used in the construction of an individual field.

24.3 How the field manager works

The PLOT3D field manager works by reading core or paged fields and return-
ing derived fields from these underlying fields. When it creates a core or paged
field, it saves a pointer to it and when possible reuses the field for later de-
rived fields. For example, if you call make_float_field(FEL.pressure) and
make_float_field(FEL_temperature),they will share the underlying Q field.

This sharing of multiple derived fields only happens when the the same field man-
ager object is used to create all of the derived fields. An application that creates a field
manager object, creates a derived field, destroys the field manager, and then creates a
new field manager and a second derived field will read the solution twice.

Memory usage with the field manager is not always optimal when the field manager
is using PLOT3D solution files. When a field manager is given a PLOT3D solution file,
in most cases it reads the entire file and creates a Q field when the first derived field is
requested. This is not efficient if only part of the solution field is used, which would
happen if make.float_field (FEL.density) is called. However, reading all of
the data allows multiple derived fields to share the solution data when the derived fields
need different but overlapping portions of the solution file.

The primitive PLOT3D field functions (the get.*.field functions) for steady
and time-varying field managers operate differently. Each reads a portion of the solu-
tion the first time it is called. If all file primitive field functions are called, the density
and energy solution data will be read twice, and the momentum data will be read three
times.

If you first create a primitive PLOT3D field and then create a derived
field, the field manager may use the primitive field instead of first creat-
ing a Q field. For example, if get.densi tymomentum.field and then
make.vector3f_field (FEL_velocity) are called, the velocity field will be
derived from the density-momentum field created in the first call. If the density-
momentum field had not existed, the velocity field would be derived from a Q field.
This behavior depends on which primitive PLOT3D fields are needed for each derived
field. See the source file FEL_plot3d_field.C for details.

Memory usage with paged files is not an issue. The paging code insures that the
data needed is read and stored only once, even if it is used for multiple primitive
PLOT3D and derived fields. Memory usage is also not an issue when the field manager
is given a PLOT3D Q field. In this case, the primitive and derived field functions return
fields derived from the Q field handed to the field manager constructor.

142 CHAPTER 24. THE PLOT3D FIELD MANAGER

24.4 Miscellaneous FEL_plot3d_field methods

FEL.plot3d_field provides a get . mesh () and a generic set () method as a
convenience. This code:

FEL_plot3d_field_ptr plot3d_manager;
FEL_mesh_ptr mesh = plot3d_manager->get_mesh();

returns the mesh associated with plot3d.manager. This mesh is associated with
any of the fields created by plot3d.manager.

FEL_plot3d_field:: "~
set (const FEL_set_keyword_enum keyword, int value);

passes the requested options to the mesh and primitive fields of the
FEL.plot3d.field object. Note that since all fields created by the
FEL_plot3d_field share the same mesh and primitive fields, the set ()
call on a FEL.plot3d._field object affects all fields which have been created,
and even fields which will be created, by the FEL_plot3d_field. Furthermore,
set () calls on any field created by the FEL_plot3d_field will have the same
wide-reaching effect. At present, this interdependence of a group of fields sharing a
common mesh is a limitation of FEL which will be resolved in a future release. In the
meantime, be aware of potentially unwanted side effects of the set () calls.

24.5 Anexample
#include "FEL.h"

int main(int argc, chaf;*f argv)
{
// mesh file, solution file in argv{l] and argv[2]
FEL_plot3d_field _ptr plot3d_manager = _
new FEL_str:eardy_‘piot?:d_fieldf(arg’v’{l] , argv(2]);

FEL_float_field_ptr helicity_field =
plot3d_manager->make_float_field(FEL_helicity):;

FEL_vector3f_field_ptr grad_pressure_£field =
plot3d_manager->make_vector3f_field(FEL_pressure_gradient);

// grad_pressure_field is ready for at_calls, or whatever

Treturn 0; . L. T ,

}

24.6. PLOT3D DERIVED FIELD “CONVENIENCE FUNCTIONS” 143

This example first creates a FEL_steady_plot3d_field using the mesh and so-
lution files specified in the first two arguments. It then creates a float field containing
helicity and a vector field containing the gradient of pressure.

24.6 PLOT3D derived field “convenience functions”

The FEL_plot3d_field takes care of file reading and caching of primitive fields by
maintaining internal state, but in response to an incoming FEL_float_field_enum
or FEL_vector3f_field_enum the manager creates the requested derived field by
calling one of a number of external “convenience functions”. You can call these func-
tions directly, whether or not you've created an FEL_plot3d field. All of the
functions take a pointer to an FEL_plot3d_g-field as their only required argument
and, as usual, an optional character string name. A few of the functions have over-
loaded versions which accept pointers to fields comprising a subset of the PLOT3D
solution vector. The functions return a pointer to either an FEL_float.fieldoran
FEL.vector3f_field. For example:

FEL_plot3d_q field_ptr g field;

FEL_float_field_ptr sp_field =
FEL_plot3d_make_stagnation_pressure_field(q field):

Although this looks very similar to a derived field constructor invocation, this wrapper
function calls any required constructors on your behalf, so you don’t want a new after
the “=".

Tables (24.2 and 24.3) present the available PLOT3D derived field convenience
functions. These functions correspond one-to-one with the FEL enums shown in
Table 24.1, modulo an obvious naming convention. The first column in the table
lists the function. The second column lists the arguments accepted by the func-
tions. Many functions are overloaded so multiple arguments types are accepted.
Table 24.4 lists the abbreviations for the argument types. See the header file
FEL plot3d._derived.field.h for more details.

The default name of the created field is the name of the function called with the
FEL_ and make._ deleted. For example, FEL_plot3dmake._density.field cre-
ates a field with a default name of FEL _plot3d.density_field You can override the de-
fault name by specifying the name as the second argument (the third argument for the
FEL_plot3dmake_velocity.field function that accepts separate density and
momentum fields).

24.7 PLOT3D derived field inventory arrays

An application may want to present all PLOT3D derived fields to a user as a selectable
list. Since the fields are predefined and lazily evaluated, they can all be created ahead
of time with minimal time and storage overhead and, when selected, they can be easily
conjured forth without any need for a complicated input routine and interpreter or the

144

CHAPTER 24. THE PLOT3D FIELD MANAGER

Function Name

Arguments |

FELplot3dmake density.field

FEL.plot3d.makenormalized density.field

O

FELplot3d.make.stagnationdensity.field

FEL.plot3dmakenormalized.stagnat jon.density.-field

FELplot3dmake.pressure_field

FEL.plot3d.makenormalized pressure.field

FEL_plot3d.make.stagnationpressure.field

FELplot3dmakenormalizedstagnation.pressure-field

FEL.plot3d.make.pressurecoefficient.field

FEL plot3d.make.stagnationpressure.coefficient_field

FEL.plot3dmake.pitot pressure.field

FEL.plot3dmake pitot.pressureratio.field

FEL,plot3d.make.dynamic.pressure-field

=)
E4

FEL.plot3dmake.temperature.field

FEL.plot3dmake normalized temperature-field

FEL plot3dmake.stagnation.temperature.field

FEL.plot3dmakenormalized.stagnation_temperature-field

FEL.plot3dmake.enthalpy.field

FEL.plot3dmakenormalized.enthalpy-field

FEL.plot 3d_make-stagnatign-enthalpy-f ield

FEL.plot3d.makenormalized stagnat ionenthalpy.field

FELplot3dmake.internal_energy.field

FELplot3idmakenormalized_internal.energy.field

FELplotidmake.stagnation.energy-field

FELplot3dmakenormalized.stagnation.energy-field

FELplot3dmakeXkinetic_energy.field

FEL plot3dmake.normalizedkinetic.energy.field

FEL plot3dmake_u.velocity.field

FEL.plot3dmake.v.velocity.field

FEL.plot3dmakew.velocity.field

FEL.plot3dmakevelocitymagnitude.field

=li=ileii=iiel L=l
HE RS

FEL_plot3d.makemachnumber.field

FEL_plot3dmake.speed of_sound_field

FELplot 3d.make-cross-flow.velocity-fiela

FELplot3dmake.divergenceof_velocity.field

FEL.plot3d.make xmomentum.field

FEL.plot3d.make.y.momentum.field

FEL.plot3dmake_z momentum-field

olQ
ZZZZZ

FEL_plot3ldmake.energy.field

FEL_plot3dmake.entropy-field

FELplot3dmake.entropy-sl.field

FEL plot3d.make.x.component_of.vorticity-f ield

FEL plot3dmake.y-component.of_vorticity-field

FELplot3dmake_z.component_of vorticity-field

FEL.plot3dmake.vorticitymagnitude.field

FEL.plot3dmake.swirl_field

FEL.plot Jdmake._velocity.cross.vorticitymagnitude.field

FELplot3dmake. helicity.field

glololgivigiy
MNEEEBEE

<

FEL plot3dmake.pressuregradient magnitude.-field

FELplot3dmake.density.gradient magnitude.field

QOO QR4 O O OO O[Ol C| L1 L)L L) RO O O L1 O O O | OO | O O OO | O O O O O | O OO O | O O OO O OO

O

Table 24.2: Derived field convenience functions that return float fields.

24.7. PLOT3D DERIVED FIELD INVENTORY ARRAYS 145

[Function Name | Arguments |
FEL.plot3dmakevelocity.field Q, DM, D+M
FEL.plot3dmake.vorticity.field Q.DM
FEL.plot3d.make.momentum.field) Q
FEL.plot3d.make.perturbationvelocity.field Q.DM
FEL.plot3d.make.velocity.cross.vorticity.field Q.DM
FEL.plot3d.makepressure.gradient.field Q
FEL.plot3d.make.density.gradient.field Q.D

Table 24.3: Derived field convenience fur_lc(ions that return vector fields.

[Abbreviation | Argument Description

D Density field

DM Density-momentum field

D+M Two separate arguments: a density field and a

momentum field

M Momentum field
Q Q field
\Y Velocity field

Table 24.4: Abbreviation key for the derived field function tables.

like. As an aid for this kind of usage, FEL provides two arrays containing all the FEL
PLOT3D enums — one with all the float field enums and one with all the vector field
enums. A sentinel (**0”) marks the end of each array.

The “inventory arrays” are found in FEL_plot3d_field.h:

FEL_float_field_enum FEL_plot3d_float_fields[];
FEL_vector3f_field_enum FEL_plot3d_vector3f_fields[]:

By traversing these arrays, one can sequentially construct all PLOT3D derived
fields and, by calling get _name () on each field, one can accumulate a list of canon-
ical field names to be presented to the user. If you are listing the names, the field
manager should be created using a FEL_plot3d.q-field instead of actual files.
If you use actual files, the names may vary from the canonical plot3d_axx. field
form. Here is a short demonstration showing how to list all the derived scalar fields
using FEL_plot3d.float_fields[]:

#include "FEL.h"

char** get_derived_float_names(int* nsfields)

{
// make dummy field manager using dummy mesh and field
FEL_mesh_ptr mesh = new FEL_regular_mesh(4, 4, 4):
FEL_plot3d_q field_ptr g _field =

new FEL_constant_field<FEL_plot3d_g>(mesh, FEL_plot3d_q()}):

FEL_solution_globals sg;
sg.set_alpha(0); sg.set_free_stream_mach(0);
sg.set_time(0); sg.set_reynolds_number(0);

146 CHAPTER 24, THE PLOT3D FIELD MANAGER

g _field->set_solution_globals(sg);
FEL_plot3d_field_ptr plot3d_field =
new FEL_g plot3d_field(q _field);

assert (plot3d_field!=NULL);

*nsfields = 0;
// no sizeof on unspecified dim array
while (FEL_plot3d_float_fields[(*nsfields)++] != 0};
--(*nsfields);
FEL_float_field_ptr* scalar_fields =
new FEL_float_field_ptr{*nsfields];
char** scalar_names = new char*[*nsfields];
for (int i=0; i<*nsfields; ++i) {
FEL_float_field ptr £ =
plot3d_field->make_float_field
(FEL_plot3d_float_fields(i]);
assert (f!=NULL) ;
const char* n = f->get_name();
scalar_names{i] = strcpy{new char([strlen(n)+1l], nj);
£=NULL;
}

// make names without "plot3d", "field", and "_"
char t[256];

char* s;
for (i=0;i<*nsfields;++1i) {
t[0]="\0";
for (s=scalar_names{i]; (s=strtok(s,"_")) !=NULL; s=NULL)
if (strcmp(s, "plot3d") && strcmp(s,"field"))} {

strcat(t,s):;
strcat(t," ");
}
tstrlen(t)-11 = '\0";
// t can’'t be longer than original
strcpy{scalar_names{i], t};
}
return scalar_names;

}

int main{)
{
. int nsfields;
char** scalar_names =
get_derived_float_names(&nsfields);
cout << nsfields <<
" scalar fields ready and waiting in scalar_fields[]"

24.7. PLOT3D DERIVED FIELD INVENTORY ARRAYS 147

<< endl;
for {int i=0;i<nsfields;++i)}

cout << scalar_names([i] << endl;
return 0;

}

148 CHAPTER 24. THE PLOT3D FIELD MANAGER

Chapter 25
Time-Varying Fields

Fields that vary with time, also known as unsteady fields, are often represented by a
series of time steps, where each time step represents the field at some instant in time.
The time steps may or may not be at fixed intervals during a simulation, though in
many cases a fixed interval is used. FEL represents unsteady fields via the classes
FEL_time_series_field and FEL.fixed interval_time.series.field.
The interface for time-series fields inherits from the standard field interface defined in
FEL.field and FEL.typed_field. Just as with steady fields, one can make “at”
calls to request data using an FEL_phys_pos, FEL.cell, FEL.vertex.cell or
FEL.structured._pos argument. All the argument types contain an FEL.time
data member. For steady data, the time is ignored; for unsteady data, it is essential
that time be specified. Given an argument containing a time value, time-series fields
produce field values by accessing data from the appropriate time step. If necessary,
time-series fields can also do temporal interpolation (described later in this chapter) to
produce values at a time intermediate to the time steps.

In general, a time-varying field with node type T can be used anywhere a field of
node type T can be used; for instance, one can build derived fields on top of an un-
steady field. There are a few cases where, due to precomputation or caching, unsteady
fields are not interchangeable with steady fields. Recall that the member function
get_eager_field provides a way for the user to get a new field where every node is
eagerly evaluated. With a time-varying field, get_eager.field essentially returns
a snapshot in time, i.e., a steady field. Thus if one wants to call get_eager_field,
then the final argument, specifying a time value, is no longer optional. It is a run-time
error if one calls get_eager_field on an unsteady field without providing a time.

A second case where unsteady fields require special treatment occurs when
working with the FEL caching fields. The fields FEL.cached.field and
FEL_hash.cached_field provide an option for users who want the computational
frugality of caching results, without having to pay the costs of eagerly precomputing
values over a whole field. Unfortunately, the FEL caching fields are not designed to
work with time-varying fields; caching fields ignore time. Thus, with caching fields
as they are currently implemented, a cached time-varying field would result in better
performance, but in general wrong answers. To prevent what could be an insidious

149

150 CHAPTER 25. TIME-VARYING FIELDS

problem, the cached field constructors check the type of field they are caching (at run-
time) and fail if the argument is not steady.

FEL currently supports time-series data where there is a fixed interval in time be-
tween each time step. The library is designed so that adding support for data that are
not temporally spaced at fixed intervals should not be too difficult in the future. The
library supports both time-varying fields and time-varying meshes. The time-varying
mesh support is described in the next chapter. The topology of the mesh is currently
required to be constant over time, in other words, meshes (and the fields based on those
meshes) that adapt over time are not currently supported.

An individual time step in an unsteady data set may be very large, the set of all
the time steps may be hundreds of times larger. For many data sets it is not feasible
to load every time step into memory. FEL time-series fields support the automated
management of a subset of the time steps in memory using a working set. We describe
the FEL_time_series_field working set control interface next.

25.1 Working sets and callbacks

The FEL_t ime_series_field class manages a working set of field objects, each
object corresponding to a time step. When the user requests data at some point within
the field represented by the FEL_t ime_series._field instance, the time-series field
must check to see if the necessary time steps are currently in the working set. If so,
then the time-series field requests data from the time steps, does temporal interpolation
if necessary, and produces the result. If a needed time step is not in the working set,
and the working set is not full, then the time step is acquired using the user-provided
callback function. The callback function is described below. If the working set is full,
then the field replaces a time step using a least recently used policy to choose the field
to be replaced.

For most users, the working set management is completely automatic, in other
words there is no need for the user to manually load and unload data. For those who do
want to directly control which time steps are loaded, the FEL_time.series_field
class provides an interface where one can dictate the working set size and contents.
The working set management member functions are:

void set_working_set_size(int n};
bool load(int time_step);

bool load_alll();

void unload(int time_step);

void unload_all{);

void unload_least_recently_used();
void set_verbose (bool);

void show_working_set (ostream& s);

The function set_working.set_size allows the user to control the size of the
working set used by the field. The default working set size is 5. The function load
allows the user to make the field load a particular time step. The function 1oad.all
resizes the working set to the total number of time steps and loads each one. The

25.1. WORKING SETS AND CALLBACKS 151

load.all function is handy when an application can afford to load every time step.
The unload functions are relatively self-explanatory. The set_verbose function
can be used to make the field output updates when time steps are loaded and unloaded.
Watching the output from verbose mode can be educational for those not familiar with
the use of working sets.

Users working with applications that are multi-threaded need to be careful with
time-series fields as they are currently implemented. The routines that manage the
working set do not have critical section protection. This means that, if multiple threads
make accesses that cause the working set to change, then there is a chance that the
working set data structure will become inconsistent. To avoid this problem the user
should ensure that the working set does not change while in multi-threaded code. The
simplest way to ensure no change is to load all the time steps initially. The load.all
call is handy for this purpose. If loading all the time steps is not an option, then the user
must make sure that working set changes occur only in single-thread mode. Providing
critical section protection for the working set is on the list of future enhancements to
FEL.

FEL_time_series_field relies on a callback function provided by the user at
field construction time to produce the field corresponding to a particular time step when
needed. For example, a callback returning a density field might look like:

unsigned flags = FEL_PLOT3D_3D_WHOLE;
const char* file_names[] = {"filel", "file2", "file3", "file4"};

FEL_float_field_ptr my_callback(FEL_mesh_ptr m, int time_step,
void*)
{
return FEL_read_density(m, file_names[time_step], flags):;
}

The callback function takes three arguments: the mesh m that the return field should
be based on, a time step, and a void* pointer to “client data”, i.e., data provided by
the user when the time-series field is constructed that gets handed back to the callback
function. The client data, for instance, could be a pointer to a structure that contains
parameters such as the file names and file reader flags, parameters that are globals in
the example above. The callback should return the field for the given time step. The
callback can return NULL to indicate some type of failure, if a file could not be read,
for example.

Callbacks give the user a great deal of flexibility in complying with requests for
time step data. For example, the callback could construct and return a derived field.
Another possibility would be for the callback to construct a new FEL.core_field
using a buffer already in memory, such as the buffer used by a simulation. Yet another
possibility would be for the callback to construct some type of analytic field that could
be used for testing. '

152 CHAPTER 25. TIME-VARYING FIELDS

25.2 Time representations and conversions

The objects in FEL, such as FEL_phys_pos, that contain a time value use the type
FEL_time. FEL_t ime, as described in Chapter 4, can represent three types of time:
physical, computational or integer computational (time step). Usually it is not neces-
sary to convert from one representation to another, since the user can choose to work
in any of the three representations. If the user does need to convert, then the library
provides the function:

int convert_time({const FEL_time& from,
FEL_time_representation_enum to_representation,
FEL_time* to) const;

The routine converts from fromto to, given the desired to.representation.

25.3 Temporal interpolation

Given a time value that does fall on a time step, time-series fields do temporal inter-
polation. FEL currently supports linear interpolation between the pair of time steps
bracketing a particular time. No temporal interpolation will take place if the user is
working in the integer time step representation. Temporal interpolation is also sup-
pressed if working in physical or computational time, and a given time value implies
no fractional part between time steps.

In the case where both temporal and spatial interpolation are necessary, for instance,
to produce a field value at a physical position in an unsteady field, temporal interpola-
tion occurs first. For instance, consider a hexahedral structured mesh with simplicial
decomposition turned off. Given an at_phys_pos call with a point p, FEL will locate
the hexahedron containing p, temporally interpolate to get the field values at the time
specified in p and then spatially interpolate to get the final result.

25.4 A time-varying field example

To illustrate the construction and use of a time-varying field, we present a small ex-
ample. The callback and globals used for this example are the same as used for the
example above (my_callback). See also the example program included as part of
the FEL primer: primer_13a.C.

#include "FEL.h"

int n_time_steps = 4;

float physical_time_0 = 12000.0;
float physical_fixed_interval = 1.0;

int main{()
{
int res;
flags = FEL_deduce_mesh_type(argv(l]);

254.

}

A TIME-VARYING FIELD EXAMPLE 153

FEL_mesh_ptr mesh = FEL_read_mesh{argv(1l], flags);
assert (mesh != NULL);
FEL_float_field_ptr field =
new FEL_fixed_interval_time_series_float_field(
mesh,
n_time_steps,
my_callback,
NULL,
physical_time_0,
physical_fixed_interval};

// find an arbitrary physical point inside mesh
FEL_cell cell;
FEL_phys_pos phys_pos;
res = mesh->int_to_cell (mesh->card(3) / 2,
3, &cell);
assert{res == 1);
res = mesh->centroid_of_cell(cell, &phys_pos):
assert{res == 1);

phys_pos.set_physical_time(physical_time_0);
float f£;

int res = field->at_phys_pos{phys_pos, &f);
assert(res == 1);

The mapping between physical time and time steps is specified by the physi-
cal.time_0 and physical_fixed.interval arguments to the field constructor.
For a time step ¢, the corresponding physical time p would be:

p=physical_time. 0 +{*physical_fixed_ interval.

When the user works in physical time, FEL.time_series.field solves for
(floating-point) computational time ¢ using the same equation. If ¢ has no fractional
part, then temporal interpolation can be avoided. If t does have a fractional part, then
the bracketing time steps are equal to the floor and ceiling of ¢.

154 CHAPTER 25. TIME-VARYING FIELDS

Chapter 26
Time-Varying Meshes

It is not difficult to imagine unsteady data sets where not only the field values change
with time but also the mesh geometry. For instance, the simulation of a helicopter or
windmill typically involves rotating blades, and often there are meshes that move with
the blades. FEL currently supports time-varying meshes using the time-varying field
mechanism described in the previous chapter. The time-varying support is currently
limited to curvilinear meshes. Once the time-varying mesh is constructed, it can be
used just as any other mesh. As with time-varying fields, the biggest difference when
using an unsteady mesh is that the arguments to mesh calls (e.g., the FEL_cel1 passed_
to coordinates_at.cell) must have their time value set. g

Unfortunately, to construct a time-varying mesh, one must follow a somewhat cir-
cuitous route. A curvilinear mesh can be made to be unsteady by constructing the
mesh with a time-series field. The field has node type FEL_vector3f_and.int,
where the vector part represents coordinates, and the int part represents an IBLANK
value. A curvilinear mesh constructed with a FEL_vector3f.and.int field con-
sults the field whenever coordinates or IBLANK data are needed. If the field provided
at mesh construction time is a time-varying field, then presto, one has a time-varying
mesh.

In the following sections we walk through the construction of an unsteady (single-
zone) curvilinear mesh and discuss what would need to be done in the multi-zone case.
Building time-varying meshes is currently one of the more challenging things that one
can do in FEL, and the reader is warned that more than one pass over this chapter may
be necessary in order for everything to make sense. In the future our plan is to factor
out the time-series mechanism from the time-series field class, so that it can be used for
both meshes and fields, without some of the gymnastics described below. In the mean
time, we hope that the following example is illuminating.

In the example we omit the construction of the solution field. Typically a data set
with an unsteady mesh also has unsteady solution data. See the previous chapter for the
details on building time-varying fields. See also the program primer.13b.C from
the FEL primer for an example where a time-varying mesh is constructed.

155

156 CHAPTER 26. TIME-VARYING MESHES

26.1 Single-zone time-varying meshes

To construct an unsteady curvilinear mesh, follow these steps:
l.AxumeakwgkbM⪚

const int n_time_steps = 5;

const char~* mesh_names[n_time_steps] =
{nmou, nmln’ nmzn’ nm3n, Im4ﬂ};

unsigned file_reader_flags;

const float physical_time_0 = 0.0;

const float physical_fixed_interval = 1.0;

2. Provide a callback to be used by the FEL_vector3 f.and_int field, where we
use an adapter to make a mesh behave like a field, e.g.:

FEL_vector3f_and_int_field_ptr
my_mesh_callback(FEL_mesh_ptr, int time_step, void*) {
FEL_mesh_ptr mesh;
mesh = FEL_read_mesh(mesh_names[time_step], file_reader_flags
if (mesh == NULL) return NULL;
return new FEL_mesh_as_vectorBf_and_int_field(mesh);
}

3. Determine the structured dimensions of the mesh, e.g.:

int res;
FEL_mesh_ptr mesh;

char* mesh_name = "my_mesh";

file_reader_flags = FEL_deduce_mesh_type(mesh_name);
assert(file_reader_flags != 0);

FEL_vector3i dim;
res = FEL__read_mesh_zone__dimensions (mesh_name,
file_reader_flags, 0, &dim);

4. Build a structured mesh:
mesh = new FEL_structured_mesh (dim[0], dim[1], dim[2]);
5. Build a time-series field for the coordinates and IBLANK, e.g.:

FEL_vector3f_and_int_field_ptr xXyzi_field =
new FEL_fixed_interval_time_series_vectorBf_and_int_field(

mesh,
n_time_steps,
my_mesh_callback,
NULL,
physical_time_0,
physical_fixed_interval);

6. Build the unsteady curvilinear mesh, e.g.:

26.2. MULTI-ZONE TIME-VARYING MESHES : 157

mesh =
new FEL_curvilinear_mesh_xyzi_field_layout(dim[O] , dim[17],
dim[2], xyzi_field);

26.2 Multi-zone time-varying meshes

To construct an FEL_multi_mesh, one should follow the same pattern as above, once
for each zone. If the user callback reads data from a multi-zone mesh file, then typically
the callback should just read data for a particular zone. If only some zones vary with
time then a time-series mechanism need only be built for those zones. Thus, if an appli-
cation has some information about which zones are steady and which are not, there is
an opportunity for optimization. By not building time-varying objects for steady zones,
an application should get better performance, since unnecessary temporal interpolation
and time step loading will be avoided. There should also be memory savings, since the
mesh for a particular zone will only occur once in memory. For meshes that contain
PLOT3D IBLANK information, one should be sure that if a zone is assumed to be
steady, then the IBLANK and coordinate data both should not vary with time.

158 CHAPTER 26. TIME-VARYING MESHES

Appendix A

Glossary

abstract class An abstract class defines interface and implementation which are in-
herited by derived classes. Abstract classes in C++ cannot be instantiated. See
also concrete class.

abstract factory See factory.

adapter An adapter provides an alternate interface for a class. For example, in FEL
the class FEL.mesh.as_field<T> serves as an adapter that provides a field
interface for a mesh object.

adjacent cells Given n-complex C, by convention there exists one (null) (n + 1)-cell
of which every n-cell of C is a face; likewise there exists one (null) (n — 1)-cell
which is the face of every vertex. Distinct k-cells ¢ and d (for 0 < k < n) are
then said to be adjacent if:
(i) there exists some (k — 1)-cell of C that is a face of both ¢ and d, and
(ii) there exists some (k + 1)-cell of which each of c and d is a face.

For example, two hexahedra are adjacent if they share a quadrilateral face. Two
vertices are adjacent if they are the endpoints of a common edge.

affine combination Let P = {pi, ..., px} be a finite set of points in RY. A point is
an affine combination of P if: ’

k
z=3Y \pi,
i=1
where ZLI A; = 1. See also linear combination.

affinely independent A finite set P of k points is affinely independent if there is not a
point p; € P such that p; is an affine combination of P — {pi}.

block A block is an alternate name for zone.

159

160 APPENDIX A. GLOSSARY

Cartesian grid A Cartesian grid is a grid where the cells are aligned with the coor-
dinate axes. The grid looks similar to the output from a quad-tree or oct-tree
decomposition, though Cartesian grids are not necessarily oct-trees. The term
“Cartesian grid” is also used by some as a synonym for uniform grid.

cell-centered field A cell-centered field is a field where there is a node associated with
each cell in the mesh. Typically the cells are hexahedra or tetrahedra.

CFD Computational Fluid Dynamics.

cell a k-cell of a topological space T is a subspace of T' whose interior is homeomor-
phic to R* and whose boundary is non-null. Less formally, typically when one
speaks of cells in CFD one means hexahedra or tetrahedra (i.e., 3-dimensional -
cells or 3-cells), though there are also O-cells (vertices), 1-cells (edges) and 2-
cells (polygons).

cell complex A cell complex of a topological space T is a finite collection C' of cells
of T such that:

(i) the relative interiors of cells of C are pairwise disjoint,
(ii) for each cell ¢ € C, the boundary of cell ¢ is the union of elements of C,
(iii) ifc,d € C and c N d # @, then c N d is the union of elements of C.

CGNS CGNS (Complex Geometry Navier Stokes) is a file format currently under
development for storing CFD data.

Chimera Chimera, a composite monster from Greek mythology, is used in CFD when
speaking of multi-zone grids.

Chimera file A Chimera file is an auxiliary file to the main multi-zone grid description
file. The Chimera file contains definitive information on how the solver should
handle regions where zones intersect.

class A class is a basic concept in object-oriented programming. A class encapsulates
both data and member functions for operating on the data.

closure The closure of a cell ¢ in a cell complex C consists of all the faces of c.

computational space A computational space is a space defined in terms of a partic-
ular discretization used to decompose a physical space. One typical computa-
tional space corresponds to a hexahedral curvilinear (structured) mesh in physi-
cal space: in computational space each physical space hexahedron corresponds
to a unit cube. Each vertex in such a computational space can be indexed as if in
a 3-dimensional array, and the indices are typically labeled i, j, and k.

concrete class A concrete class is a class that can be instantiated. See also abstract
class.

curvilinear mesh A curvilinear mesh is the most general form of structured mesh.

161

demand-driven evaluation Demand-driven evaluation is a technique where compu-
tations are done only when requested, rather than in advance.

derived field A derived field is a field defined in terms of one or more other fields.
For example, a velocity derived field can be defined in terms of momentum and

density fields.

dynamic binding The run-time association of a request to an object and one of its
operations. In C++, virtual functions are dynamically bound.

dynamic casting Dynamic casting is a new feature in the C++ standard designed to
support safe casts down or across an inheritance hierarchy. With dynamic casts,
the success of the cast of a pointer can be verified at run-time by testing whether
the result is non-NULL. For example, given a class B and a class D derived from

B:
B* b;
D* 4d;
b = new D{();
d = (D*) b; // C-style cast
d = dynamic_cast<D*> b; // C++ dynamic cast

assert(d != NULL);

The C++ standard only requires that dynamic casting be supported for classes
with virtual functions. Dynamic casting is not supported by some older C++
compilers. See also RTTI.

eager evaluation Eager evaluation is the opposite of lazy evaluation.

edge-centered field An edge-centered field is a field where there is a node associated
with each edge of the mesh.

Enterprise “Enterprise” is the name of the file format used for working with paged
meshes and fields. See Chapter 23.

exceptions Exceptions are a new feature of the C++ standard designed to support the
handling of exceptional conditions. Exceptions are not supported by some older
C++ compilers.

face A cell cina collection C is the face of acell d € C if ¢ can be defined in terms of
a subset of the vertices of d. For example, a tetrahedron has triangle, edge, and
vertex faces. See also proper face.

facet A facer is a face. Typically facets refer to 2-cells, such as triangles and quadri-
laterals.

face-centered field A face-centered field is a field where a node is associated with
each face in the mesh. Typically the faces refer to 2-cells, such as quadrilaterals
and triangles.

162 APPENDIX A. GLOSSARY

factory A factory encapsulates the procedures required to build various types of ob-
jects. For example, in FEL the class FEL.plot3d_field encapsulates the
steps required to build each of the over 50 standard derived fields defined by
PLOT3D.

FAST The Flow Analysis Software Toolkit is a CFD visualization post-processing ap-
plication developed at NASA Ames Research Center.

FEL The Field Encapsulatibn Lfbrary.

field A field represents a function within a domain via a finite set of nodes. Every field
has a mesh that contains the location and organization of the nodes.

friend class In C++, a class A can be declared to be a friend of another class B, en-
abling A to have the same access rights to the member functions and data of B
instances as B itself.

general position The definition of general position is context dependent, i.e., depen-
dent upon the particular application. Typically it is easier to define general po-
sition in terms of what it is not: a configuration is not in general position if an
infinitesimal perturbation can change how the configuration is classified. For
example, 4 points in R? are not in general position if they are coplanar.

grid The term grid is used as a synonym for mesh by many. For some, grid implies
structured. Thus mesh is preferred to grid if one wishes to refer to unstructured
objects, or both structured and unstructured objects.

has-a relationship A has-a relationship denotes containment. Has-a is interchange-
able with is-part-of or uses-for-implementation. See also is-a relationship.

homeomorphic Two spaces are homeomorphic if they are topologically equivalent.

hybrid mesh A hybrid mesh is a mesh that is partially structured and partially unstruc-
tured. See Figure A.1.

IBLANK IBLANK isa standard from PLOT3D [WBPE92] for assocxatmg extra in-
formation with each vertex in a mesh, using one integer per vertex. IBLANK val-
ues can be used to provide hints about overlapping zones in multi-zone meshes,

or to indicate that the node value associated with a vertex is not valld

incident cells Cells ¢ and d are incident if c is a proper face of d, or vice versa. For
example, there are vertices, edges, and quadrilaterals that are incident with a

hexahedron in a mesh.

instantiation Instantiation

163

is the creation of a new instance of a given class. With

templated classes instantiation also involves the generation at compile-/link-time
of the code implied by 2 particular set of template parameters.

irregular mesh Irregular mesh is an alternate name for rectilinear mesh.

is-a relationship Anis-a relationship expresses a refinement

In C++ class hierarchies, the relationship between a
For example, a curvilinear mesh
See also has-a relationship.

class is usually is-a.
a structured mesh is-a mesh.

iterator lterators
Meshes can be thought of as collections of cells,

the mesh classes.

matrix A Jacobian matrix is used to

For example,

Jacobian
space 1o another.

between types or classes.
derived class and a base
is-a structured mesh, and

are an abstraction for processing items one-by-on in a collection.

and FEL provides iterators for

do transformations from one coordinate
to do transformations between computational

space and physical space one can use the Jacobian matrix J:

gz 9Bz

T
oz

_ 9t oy Oy

-.7 - = — D€ 31
0§

0z 8z

8¢ an

where z, y, and z refer o physical coordinates and &, 7,

refer to computational coordinates.

One typical use of the Jacobian matrix is

with respect to computational space into physical space

bz

8z

and ¢ (xi, eta and zeta)

to convert partial derivatives computed

derivatives. For instance,

to compute the physical space spatial gradientata point in a scalar field, one can

compute partial derivatives in

computational space and then

convert to physical

space using the following equation, based on the chain rule for derivatives:
oz 9z 8z \ 7
B 8 8
of _OL% _ (4 y)| ¥
o% 55"35 - g€ Bn B¢ 3 91 O¢
. 8z 9z
5% on

The partial terms with respect to computational space are relatively easy 1O ap-
proximate using finite differencing techniques.

lazy evaluation Lazy evaluation is a synonym for demand-driven evaluation.

linear combination Let P = {pr,--»Pr}bea finite set of points in R A
a linear combination of Pif:

k
= }: Aipi-

i=1

point z is

164 APPENDIX A. GLOSSARY

See also affine combination.

member function A memper Junction is a function defined as part of a ¢lass.

tween the vertices. Based on the connectivity one can also define cells, for ex-
ample, hexahedral cells in a structured mesh.

method Method is an alternate name for member function.
metrics The terms in the inverse of 2 Jacobian matrix are known as merrics.
node A nodeis a point in the domain where the solution is calculated.

overloading An operation is overloaded if the code that is executed js dependent upon
the type of the arguments. For example, C supports a limited kind of overloading
for operators such as “+”, since the compiler automatically generates the appro-
priate machine instructions, such as for fixed-point or floating-point addition,
based on the argument types. C++ supports the same built-in overloading, as
well as a much more general system for user-defined overloading of operators
and functions.

The choice of which version of an overloaded function to use in C++ is made at
compile-time, in contrast to dynamically-bound functions, where the choice is
made at run-time. See virtua] function and polymorphism.

parameterized by the type of value contained by each element in the list. Param-
eterized types are supported in C++ via templates.

€

real world” do-
main, such as the region surrounding an aircraft, where one wishes to model
phenomena such as flow. See also computational space.

placement new Placement new is a special version of the C+ operator new where
the user explicitly specifies the memory to be used for an object.

polymorphism Polymorphism is the ability to substitute objects of matching interface
for one another at run-time. In C++ a class is polymorphic if it declares or inherits
a virtual function.

165

PLOT3D PLOT3D was originally a CFD visualization post processing tool developed
by Pieter Buning of NASA Ames Research Center. PLOT3D lives on primarily
in some of the standards it defined such as those for file formats and IBLANKS.

proper face A cell ¢ is a proper face of a cell d if ¢ is a face of dandc # d.

pure virtual function A pure virtual function of a class A is a member function that is
required to be defined by subclasses of A. A class that has a pure virtual function
is an abstract class.

rectilinear mesh A rectilinear mesh is a structured mesh where the cells are aligned
with the coordinate axes, but the spacing between adjacent vertices can be ir-
regular. Rectilinear meshes are also known as irregular meshes or non-uniform
meshes. See Figure A.2.

reference counting Reference counting is a technique for tracking how many other
objects are using (have a reference to) a particular object. Reference counting is
typically part of a memory management strategy where objects are automatically
deallocated (garbage collected) when their count goes to 0. Reference counting
is also known as ‘‘use counting”.

regular mesh A regular mesh is a structured mesh where the cells are aligned with
the coordinate axes and the spacing between adjacent vertices is equal in each
dimension. See Figure A.2. In some of the literature a regular mesh is considered
to be a uniform mesh.

RTTI Run-Time Type ldentification is a new capability defined in the C++ standard
allowing the user to query an object about its type. RTTI is required to be sup-
ported only for classes which have virtual functions. RTTT is not supported by
soffie older C++ compilers. Some new C++ features, such as dynamic casting,

“ r‘gidqc;;);eﬁd upor?ﬁ%e avallablhty of RTTT

signature An operation’s signature is deﬁned by its name, parameters, and return
value.

simplex A k-simplex is the convex hull of k ¥] affinely independent points. A 0-
simplex is a vertex, a - 51mp]ex is ge a 2-simplex is a triangle and a 3-
simplex is a tetrahedron o -

simplicial decomposmon Simplicial deéompésiﬁon is the subdivision of mesh cells
into simplices. For example, hexahedra would be subdivided into tetrahedra,
and quadrilaterals would be subdivided into triangles.

specialization In C++ templated functions, a specialization is an implementation for
a specific template type that overrides the generic implementation provided by
the template.

star The star of a cell ¢ in a cell complex C is the subset of C' consisting of all the
cells of which c is a face.

166 APPENDIX A. GLOSSARY

steady A steady mesh or field is one that does not change over time. See also unsteady.

STL The Standard Template Library is a library of C++ templated classes supporting
container data structures, such as sets.

structured mesh In a structured mesh the vertices and cells are organized in a regular
pattern. In one of the most typical types of structured meshes, the vertices can
be addressed as if they were in a multi-dimensional array. In 3-d, ail the 3-
dimensional cells are hexahedral. Structured meshes can be further classified as
uniform, regular, rectilinear and curvilinear. See Figure A.2.

R

Uniform Regular Rectilinear Curvilinear

Figure A.2: FEL structured mesh types.

templates Templates are C++’s support for parameterized types.

uniform mesh A uniform mesh is a structured mesh where the cells are aligned
with the coordinate axes and the spacing between adjacent vertices is uniform
throughout. See Figure A.2.

unsteady An unsteady mesh or field is one that changes over time. See also steady.

unstructured mesh An unstructured mesh in 3-d consists of polyhedral cells, with no
implicit connectivity. The cells are not necessarily all tetrahedra, though this is
one of the most common unstructured types. See Figure A.3.

(%

Figure A.3: An unstructured mesh.

use counting See reference counting.

vertex-centered field A vertex-centered field is a field where a node is associated with
~ each vertex in the mesh. The standard file formats defined by PLOT3D are all
for vertex-centered fields. o

167

virtual function A virtual function is 2 member function where the particular imple-
mentation is selected at run-time, based on the type of the object for which the
operation is called. C++ supports polymorphism via virtual functions.

working set A working set is a subset of a much larger set, where maintaining a subset
improves performance in some respect. For instance, the caching done in the
memory hierarchies used by most microprocessor-based systems can be thought
of as a performance improvement strategy based on working sets.

zone A zone refers to a particular submesh in a multi-mesh.

168 APPENDIX A. GLOSSARY

Bibliography

[Ale6l]

[B+90]

[Bar91]

[BKGY96]

[CE97]

(FIT]

[GBD96]

{KL95]

[MS96]

[PTVF92]

[Vis]

P. Alexandroff. Elementary Concepts of Topology. Dover Publications,
Inc., New York, 1961. Translated by Alan E. Farley.

G. Bancroft et al. FAST: A multi-processed environment for visualiza-
tion of computational fluid dynamics. In Proceedings of Visualization 90,
pages 14-24. [EEE Computer Society Press, October 1990.

T. Barth. Numerical aspects of computing viscous high Reynolds number
flows on unstructured meshes. In 29th Aerospace Sciences Meeting, Reno,
Nevada, January 1991. ’

S. Bryson, D. Kenwright, and M. Gerald-Yamasaki. FEL: The field en-
capsulation library. In Proceedings of Visualization '96, pages 241-247.
IEEE Computer Society Press, October 1996.

M. Cox and D. Ellsworth. Application-controlled demand paging for out-
of-core visualization. In Proceedings of Visualization '97, pages 235-244.
IEEE Computer Society Press, October 1997.

FITS. http://www.gsfc.nasa.gov/astro/ fits/fits_-
home.html.

K. Gundy-Burlet and D. Dorney. Three-dimensional simulations of hot
streak clocking in a 1-1/2 stage turbine. In 32nd AIAA/ASME/SAE/ASEE
Joint Propulsion Conference, Lake Buena Vista, FL, July 1996.

D. Kenwright and D. Lane. Optimization of time-dependent particle trac-
ing using tetrahedral decomposition. In Proceedings of Visualization '95.
IEEE Computer Society Press, October 1995.

D. Musser and A. Saini. STL Tutorial and Reference Guide. Addison
Wesley Publishing Company, Menlo Park, California, 1996.

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes
in C. Cambridge University Press, New York, second edition, 1992.

VisSD. http://www.ssec.wisc.edu/ ~billh/vis5d.html.

169

170 BIBLIOGRAPHY

{WBPE92] P. Walatka, P. Buning, L. Pierce, and P. Elson. PLOT3D User’s Manual.
National Aeronautics and Space Administration, July 1992. NASA Tech-
nical Memorandum 101067.

